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PHYS 403 HW2Model Solution

Rui Wen

1 Diatomic gas

A diatomic molecule has 3 degrees of freedom, viz., translational motion of the molecular centre of
mass, rotational motion abut the centre of mass, and vibrations in distance between the 2 atoms. We
will treat these different degrees of freedom as being independent, ie., with no coupling between
them. We assume the diatom is made from 2 atoms, each with mass m, and mean separation a0.

(15pts)(i). The moment of inertia of the rotating diatom is I = 1
2
ma20. We also suppose that the

frequency of small harmonic oscillation of the distance x around the mean a0 between the atoms is
ω0.

Show that we can write the total canonical partition function Z for a gas of N such diatoms as
Z = ZtrZrotZvib, where Ztr comes from teh translational degrees of freedom, Zrot = zNI and Zvib = zNωo

and show that

zI =
∞∑
j=0

(2j + 1) exp
[
−βℏ2j(j + 1)/2I

]
; zωo =

∞∑
n=0

exp [−βℏ(n+ 1/2)ωo] (1.1)

You do not have to evaluate the translational term Ztr.
Solution:

First notice this is a quantum statistics problem, since we have ℏ in the partition function. Recall
the definition of partition function in quantum statistics:

Z = Tr (e−βĤ) (1.2)

Here the Hamiltonian(energy) is H = Htr +Hrot +Hvib =
∑

i htr,i +
∑

i hrot,i +
∑

i hvib,i, where
htr, hrot, hvib are the single particle Hamiltonians:

htr =
P⃗ 2

2M
; hrot =

L⃗2

2I
; hvib =

p2

2M
+

1

2
Mω2

ox
2. (1.3)



then

Z = Tr (e−β
∑

i(htr,i+hrot,i+hvib,i)) (1.4)
= Tr (e−β(htr+hrot+hvib))N (1.5)
= Tr (e−βhtr)NTr (e−βhrot)NTr (e−βhvib)N (1.6)
= ZtrZrotZvib (1.7)

where Ztr = Tr (e−βhtr)N = zNtr , (1.8)
Zrot = Tr (e−βhrot)N = zNI , (1.9)
Zvib = Tr (e−βhvib)N = zNωo

. (1.10)

Next we calculate zI, zωo . Energy levels of hrot = L⃗2/(2I) are 1/(2I) times the eigenvalues of L2,
which are ℏ2l(l + 1), with degeneracy 2l + 1, therefore

zI =
∞∑
l=0

(2l + 1)e−βℏ2l(l+1)/(2I). (1.11)

Energy levels of hvib are ℏωo(n+ 1
2
) with no degeneracy, therefore

zωo =
∞∑
n=0

e−βℏωo(n+1/2) (1.12)

Marking scheme

• 2pts for showing understanding of definition of partition function

• 2pts for showing understanding of the Hamiltonian of the system

• 3pts for showing the partition function splits into products of 3 factors.

• 3pts for identifying the energy levels of the rotation mode.

• 2pts for identifying the degeneracy of the rotation energy.

• 3pts for identifying the energy levels of the vibration mode.

• Rigorousness is not required for getting full marks.

• You get half the mark if results differ by a numerical factor.

(20pts)(ii) Let us first consider the vibrational modes. Evaluate the partition function zωo , and
then show that the vibrational contribution to the energy of the system isUvib(β) = N/2ℏωo coth(βℏωo/2).
From this find also the contribution Cvib

V (β) to the specific heat. Finally, sketch the behaviour of both
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Uvib(β)and Cvib
V (β) as functions of the temperature T.

Solution

Uvib(β) = − 1

Zvib

∂Zvib

∂β
= − 1

zNωo

∂zNωo

∂β
= − 1

zωo

N∂zωo

∂β
(1.13)

now zωo is

zωo =
∞∑
n=0

e−βℏωo(n+1/2) = e−βℏωo/2

∞∑
n=0

e−βℏωon (1.14)

= e−βℏωo/2
1

1− e−βℏωo
=

1

eβℏωo/2 − e−βℏωo/2
=

1

2 sinh(βℏωo/2)
(1.15)

therefore internal energy is

Uvib(β) = − 1

zωo

N∂zωo

∂β
= −N2 sinh(βωo/2)

(
− 1

2 sinh(βℏωo/2)2

)
cosh(βℏωo/2)ℏωo/2 (1.16)

= Nℏωo/2 coth(βℏωo/2).■ (1.17)

The specific heat is

Cvib
V (β) =

∂U

∂T
=

dβ

dT

∂U

∂β
= − 1

kBT 2

∂U

∂β
= −kBβ

2∂U

∂β
(1.18)

= −kBβ
2Nℏωo/2

−1

cosh2(βℏωo/2)
ℏωo/2 (1.19)

= kBNβ2ℏ2ω2
o/4

1

cosh2(βℏωo/2)
(1.20)

Now to plot U(T ), notice when T → +∞, β → 0+, coth(βℏωo/2) = eβℏωo/2+e−βℏωo/2

eβℏωo/2−e−βℏωo/2
∼ 1

βℏω ,
therefore U(β) ∼ Nℏωo/2

1
βℏωo

= N
2
kBT ; when T → 0+, β → +∞, coth(βℏωo/2) ∼ 1, so U(β) ∼

Nℏωo/2.
To plot CV (T ), notice when T → +∞, β → 0+, cosh(βℏωo/2) = eβℏωo/2−e−βℏωo/2

2
∼ βℏωo/2,

thus CV ∼ kBNβ2ℏ2ω2
o/4

4
β2ℏ2ω2

o
= NkB; when T → 0+, β → +∞, and cosh(βℏωo/2) =

eβℏωo/2+e−βℏωo/2

2
∼ eβℏωo/2/2, then β2

eβℏωo/2
∼ 0 ⇒ CV (T = 0) = 0.

Marking scheme

• 2pt for knowing the definition of internal energy.

• 2pts for getting the correct partition function.

• 3pts for getting the correct internal energy.
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• 2pt for knowing the definition of specific heat.

• 3pts for getting the correct specific heat.

• 2pt if the plot of energy starts at a nonzero point at T = 0.

• 2pt if the plot of energy grows linearly when T is large.

• 2pt if the plot of specific heat starts at 0 when T = 0.

• 2pt if the plot of specific heat goes to a constant when T is large.

• You get half mark if results differ by a numerical constant.

((20pts)iii) Now let’s look at Zrot for the rotational motion of the diatom. The low T behaviour
is easy, because the terms in the sum in the expression for zI(β) decrease rapidly with increasing j.
By taking just the first 2 terms in the sum, find a simple low-T result for zI(β), and from this find
expressions for Urot(T ) and Crot(T ) for the N diatoms in the low T regime. For the high-T behaviour
we need to approximate the sum as an integral. Using the result

∫∞
0

dxxe−x2
= 1/2, find a simple

result for zI(β) in the high-T regime where kT ≫ ℏ2/2I , with the result ∝ kT . Then, from this result,
find the energy Urot and Crot(T ) for theN diatoms in the high T regime. Finally, plot sketches for Urot

and Crot(T )for the N diatoms as a function of T ; you can use the expression you found for the low-T
and high-T results, and then just simply interpolate between them.
Solution

Low T limit: take the first two terms in the sum, we have zI = 1 + 3e−βℏ2/I , therefore

Urot = −N
1

zI

∂zI
∂β

= −N
1

1 + 3e−βℏ2/I (−3ℏ2/I)e−βℏ2/I =
3Nℏ2/I
3 + eβℏ2/I

∼ 0, (1.21)

and

Crot = −kBβ
2∂U

∂β
= −kBβ

23Nℏ2/I
(
− 1

(3 + eβℏ2/I)2
ℏ2/Ieβℏ2/I

)
=

3kBβ
2Nℏ4/I2eβℏ2/I

(3 + eβℏ2/I)2
∼ 0.

(1.22)

High T limit:

zI =
+∞∑
j=0

(2j + 1)e−βℏ2j(j+1)/2I ∼
∫ +∞

0

(2j + 1)e−βℏ2j(j+1)/2Idj (1.23)

Next we perform a change of variable, let x2 = βℏ2
2I

j(j + 1), 2xdx = βℏ2
2I

(2j + 1)dj, we then have

zI =

∫ +∞

0

4I

βℏ2
xdxe−x2

=
4I

βℏ2
1

2
=

2I

βℏ2
, (1.24)
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from which we can extract the energy and specific heat in the high T limit:

Urot = −N
1

zI

∂zI
∂β

= −N
βℏ2

2I

2I

ℏ2
−1

β2
= NkBT (1.25)

Crot =
∂U

∂T
= NkB. (1.26)

Marking Scheme

• 2 for knowing definition of the internal energy

• 3 for getting the correct energy in small T limit.

• 2 for knowing definition of the specific heat.

• 3 for getting the correct specific heat in small T limit.

• 3 for knowing how to express partition fucntion as an integral.

• 3 for evaluating the integral correctly.

• 2 for getting the energy in the large T limit.

• 2 for getting the specific heat in the large T limit.

• You get half mark if results differ by a numerical constant.

(10pts)(iv) The third contribution to the specific heat coming from the translational degrees of
freedom is just that from a 3-dimensional classical Maxwell-Boltzmann gas. Typically, the vibrational
zero point energy ℏωo/2 ≫ Eo, whereEo = ℏ2/2I is the rotational zero point energy. Using the results
you have derived above for Crot

V (T ) and Cvib
V (T ), sketch the result you expect for the TOTAL specific

heat CV (T ) for a gas of N diatoms, as a function of T . Explain the limiting behaviour you find for
CV (T ) for (i) high T (ie., for T ≫ ℏωo/2) and for low T (ie., for kT ≪ ℏ2/2I)?
Solution

There will be three regions of interests: kBT ≪ ℏ2/2I, ℏ2/2I ≪ kBT ≪ ℏωo/2 and kB ≫ ℏωo/2.
In the low T region, Crot

V ∼ Cvib
V ∼ 0, thus CV ∼ C tr

V = 3
2
NkB; in the middle region Crot

V ∼
NkB, C

vib
V ∼ 0, thus CV ∼ Crot

V + C tr
V = 5

2
NB; in the high T limit Cvib

V ∼ NkB, thus CV ∼
C tr

V + Crot
V + Cvib

V = 7
2
NkB
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Marking Scheme

• 1pts for understanding the existence of 3 different temperature regions.

• 3pts for getting the value correct in the low T limit.

• 3pts for getting the value correct in the middle T region.

• 3pts for getting the value correct in the high T limit.

2 Interstellar Grain

The space in galaxies is full of ‘interstellar grains’, ie., particles made of carbon or silicate materials
which drift through a very rarified interstellar gas, largely composed of Hydrogen atoms. They are
tpically microns in size, sometimes larger. The H atoms can stick to the grains and react with the C
to form hydrocarbon molecules - this leads to the gradual synthesis of very complex hydrocarbons
on the grains, a fact which may be important for the origin/evolution of life. Let’s assume that the
gas of H atoms in the interstellar medium, with density ρ and temperature T, is in thermodynamic
equilibrium with the H atoms stuck to the grain surface. Suppose also that on a given grain there
are No sites available for H atoms to stick, one for each site - for simplicity we assume the (negative)
binding energy is Uo.

(12pts)2(a): Suppose that the chemical potential of the H atoms on the grain and in space is µ;
what is the grand partition function for the atoms?
Solution

There areN0 sites, each can either be occupied by anH atom or not. When a site is occupied, the
particle number is 1 and the energy is−Uo. Therefore the grand canonical partition function for
a single site is ξ = 1 + e−β(−Uo)+βµ×1 = 1 + eβUo+βµ, the total grand canonical partition function
for no sites is then

Ξ(β, µ) = ξN0 = (1 + eβUo+βµ)N (2.1)

Marking Scheme

• 2pts for knowing the definition of grand canonical partition function.

• 5pts for getting the single site partition function.

• 5pts for getting the total partition function.
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(10pts)2(b): What is the expectation value ⟨m⟩ of the fraction M/No, where M is the number of
atoms which are stuck to the grain surface, as a function of µ, U0, and the temperature T ?
Solution

the average number of atoms in a single site is:

⟨M0⟩ = 0× 1

ξ
+ 1× eβUo+βµ

ξ
=

eβUo+βµ

1 + eβUo+βµ
=

1

1 + e−βUo−βµ
(2.2)

then since particle number is extensive, the total average number of particles is:

⟨M⟩ = No⟨M0⟩ =
No

1 + e−βUo−βµ
, (2.3)

and the fractionM/No is just ⟨M0⟩.

Marking Scheme

• 5pts for showing understanding of how to calculate average values of quantities.

• 5pts for getting the correct average value of m.

(13pts)2(c): If the chemical potential of a gas of H atoms of mass m at temperature T and number
density ρ = p/kT per unit volume is given by

ρ =
1

4π2
(2m)3/2

∫ +∞

0

dE

ℏ3
E1/2e−β(E−µ) (2.4)

then we can determine ⟨m⟩, now in terms of pressure p, Uo, and the temperature T. Find this result,
and evaluate it for a pressure p = 10−18 atmospheres, a temperature of 40 K, and assuming Uo = 5eV

(recalling that 1eV ∼ 11, 604K). You will need to find out what is atmospheric pressure from the
literature.
Solution

The question is essentially asking you to change variable from (β, µ, Uo) to (β, p, Uo) using the
relation given above. First we solve the integral:

ρ =
1

4π2
(2m)3/2eβµ/ℏ3

∫ +∞

0

dEE1/2e−βE (2.5)

=
1

4π2
(2m)3/2eβµ/ℏ3

√
π

2β3/2
=

(
m

2πβℏ

)3/2

eβµ (2.6)

⇒eβµ = ρ

(
2πβℏ
m

)3/2

(2.7)

7



therefore the average atom number can be expressed as

⟨m⟩ = 1

1 + e−βUo−βµ
=

1

1 + e−βUo 1
ρ

(
m

2πβℏ

)3/2
∼ 1 (2.8)

Marking Scheme

• 5 for doing the integration correctly.

• 3 for expressing µ in terms of other variables.

• 3 for getting the correct expression for ⟨m⟩

• 2 for evaluting ⟨m⟩ correctly
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