PHYS 403 HW2 Model Solution

Rui Wen

1 Diatomic gas

A diatomic molecule has 3 degrees of freedom, viz., translational motion of the molecular centre of mass, rotational motion abut the centre of mass, and vibrations in distance between the 2 atoms. We will treat these different degrees of freedom as being independent, ie., with no coupling between them. We assume the diatom is made from 2 atoms, each with mass m, and mean separation a_{0}.
(15pts)(i). The moment of inertia of the rotating diatom is $I=\frac{1}{2} m a_{0}^{2}$. We also suppose that the frequency of small harmonic oscillation of the distance x around the mean a_{0} between the atoms is ω_{0}.

Show that we can write the total canonical partition function \mathcal{Z} for a gas of N such diatoms as $\mathcal{Z}=Z_{\mathrm{tr}} Z_{\mathrm{rot}} Z_{\mathrm{vib}}$, where Z_{tr} comes from teh translational degrees of freedom, $Z_{\mathrm{rot}}=z_{I}^{N}$ and $Z_{\mathrm{vib}}=z_{\omega_{o}}^{N}$ and show that

$$
\begin{equation*}
z_{I}=\sum_{j=0}^{\infty}(2 j+1) \exp \left[-\beta \hbar^{2} j(j+1) / 2 I\right] ; \quad z_{\omega_{o}}=\sum_{n=0}^{\infty} \exp \left[-\beta \hbar(n+1 / 2) \omega_{o}\right] \tag{1.1}
\end{equation*}
$$

You do not have to evaluate the translational term $Z_{\text {tr }}$.

Solution:

First notice this is a quantum statistics problem, since we have \hbar in the partition function. Recall the definition of partition function in quantum statistics:

$$
\begin{equation*}
\mathcal{Z}=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \tag{1.2}
\end{equation*}
$$

Here the Hamiltonian(energy) is $H=H_{\mathrm{tr}}+H_{\mathrm{rot}}+H_{\mathrm{vib}}=\sum_{i} h_{\mathrm{tr}, i}+\sum_{i} h_{\mathrm{rot}, i}+\sum_{i} h_{\mathrm{vib}, i}$, where $h_{\mathrm{tr}}, h_{\mathrm{rot}}, h_{\mathrm{vib}}$ are the single particle Hamiltonians:

$$
\begin{equation*}
h_{\mathrm{tr}}=\frac{\vec{P}^{2}}{2 M} ; \quad h_{r o t}=\frac{\vec{L}^{2}}{2 I} ; \quad h_{v i b}=\frac{p^{2}}{2 M}+\frac{1}{2} M \omega_{o}^{2} x^{2} . \tag{1.3}
\end{equation*}
$$

then

$$
\begin{align*}
\mathcal{Z} & =\operatorname{Tr}\left(e^{-\beta \sum_{i}\left(h_{\mathrm{tr}, i}+h_{\mathrm{rot}, i}+h_{\mathrm{vib}, i}\right)}\right) \tag{1.4}\\
& =\operatorname{Tr}\left(e^{-\beta\left(h_{\mathrm{tr}}+h_{\mathrm{rot}}+h_{\mathrm{vib}}\right)}\right)^{N} \tag{1.5}\\
& =\operatorname{Tr}\left(e^{-\beta h_{\mathrm{tr}}}\right)^{N} \operatorname{Tr}\left(e^{-\beta h_{\mathrm{rot}}}\right)^{N} \operatorname{Tr}\left(e^{-\beta h_{\mathrm{vib}}}\right)^{N} \tag{1.6}\\
& =Z_{\mathrm{tr}} Z_{\mathrm{rot}} Z_{\mathrm{vib}} \tag{1.7}\\
\text { where } Z_{\mathrm{tr}} & =\operatorname{Tr}\left(e^{-\beta h_{\mathrm{tr}}}\right)^{N}=z_{\mathrm{tr}}^{N}, \tag{1.8}\\
Z_{\mathrm{rot}} & =\operatorname{Tr}\left(e^{-\beta h_{\mathrm{rot}}}\right)^{N}=z_{\mathrm{I}}^{N}, \tag{1.9}\\
Z_{\mathrm{vib}} & =\operatorname{Tr}\left(e^{-\beta h_{\mathrm{vib}}}\right)^{N}=z_{\omega_{o}}^{N} . \tag{1.10}
\end{align*}
$$

Next we calculate $z_{\mathrm{I}}, z_{\omega_{o}}$. Energy levels of $h_{\mathrm{rot}}=\vec{L}^{2} /(2 I)$ are $1 /(2 I)$ times the eigenvalues of L^{2}, which are $\hbar^{2} l(l+1)$, with degeneracy $2 l+1$, therefore

$$
\begin{equation*}
z_{I}=\sum_{l=0}^{\infty}(2 l+1) e^{-\beta \hbar^{2} l(l+1) /(2 I)} \tag{1.11}
\end{equation*}
$$

Energy levels of $h_{\text {vib }}$ are $\hbar \omega_{o}\left(n+\frac{1}{2}\right)$ with no degeneracy, therefore

$$
\begin{equation*}
z_{\omega_{o}}=\sum_{n=0}^{\infty} e^{-\beta \hbar \omega_{o}(n+1 / 2)} \tag{1.12}
\end{equation*}
$$

Marking scheme

- 2 pts for showing understanding of definition of partition function
- 2 pts for showing understanding of the Hamiltonian of the system
- 3pts for showing the partition function splits into products of 3 factors.
- 3pts for identifying the energy levels of the rotation mode.
- $2 p t s$ for identifying the degeneracy of the rotation energy.
- 3pts for identifying the energy levels of the vibration mode.
- Rigorousness is not required for getting full marks.
- You get half the mark if results differ by a numerical factor.
(20pts)(ii) Let us first consider the vibrational modes. Evaluate the partition function $z_{\omega_{o}}$, and then show that the vibrational contribution to the energy of the system is $U_{\text {vib }}(\beta)=N / 2 \hbar \omega_{o} \operatorname{coth}\left(\beta \hbar \omega_{o} / 2\right)$. From this find also the contribution $C_{V}^{\mathrm{vib}}(\beta)$ to the specific heat. Finally, sketch the behaviour of both
$U_{\text {vib }}(\beta)$ and $C_{V}^{\mathrm{vib}}(\beta)$ as functions of the temperature T.

Solution

$$
\begin{equation*}
U_{\mathrm{vib}}(\beta)=-\frac{1}{Z_{\mathrm{vib}}} \frac{\partial Z_{\mathrm{vib}}}{\partial \beta}=-\frac{1}{z_{\omega_{o}}^{N}} \frac{\partial z_{\omega_{o}}^{N}}{\partial \beta}=-\frac{1}{z_{\omega_{o}}} \frac{N \partial z_{\omega_{o}}}{\partial \beta} \tag{1.13}
\end{equation*}
$$

now $z_{\omega_{o}}$ is

$$
\begin{align*}
z_{\omega_{o}} & =\sum_{n=0}^{\infty} e^{-\beta \hbar \omega_{o}(n+1 / 2)}=e^{-\beta \hbar \omega_{o} / 2} \sum_{n=0}^{\infty} e^{-\beta \hbar \omega_{o} n} \tag{1.14}\\
& =e^{-\beta \hbar \omega_{o} / 2} \frac{1}{1-e^{-\beta \hbar \omega_{o}}}=\frac{1}{e^{\beta \hbar \omega_{o} / 2}-e^{-\beta \hbar \omega_{o} / 2}}=\frac{1}{2 \sinh \left(\beta \hbar \omega_{o} / 2\right)} \tag{1.15}
\end{align*}
$$

therefore internal energy is

$$
\begin{align*}
U_{\text {vib }}(\beta) & =-\frac{1}{z_{\omega_{o}}} \frac{N \partial z_{\omega_{o}}}{\partial \beta}=-N 2 \sinh \left(\beta \omega_{o} / 2\right)\left(-\frac{1}{2 \sinh \left(\beta \hbar \omega_{o} / 2\right)^{2}}\right) \cosh \left(\beta \hbar \omega_{o} / 2\right) \hbar \omega_{o} / 2 \tag{1.16}\\
& =N \hbar \omega_{o} / 2 \operatorname{coth}\left(\beta \hbar \omega_{o} / 2\right) . \tag{1.17}
\end{align*}
$$

The specific heat is

$$
\begin{align*}
C_{V}^{\mathrm{vib}}(\beta) & =\frac{\partial U}{\partial T}=\frac{d \beta}{d T} \frac{\partial U}{\partial \beta}=-\frac{1}{k_{B} T^{2}} \frac{\partial U}{\partial \beta}=-k_{B} \beta^{2} \frac{\partial U}{\partial \beta} \tag{1.18}\\
& =-k_{B} \beta^{2} N \hbar \omega_{o} / 2 \frac{-1}{\cosh ^{2}\left(\beta \hbar \omega_{o} / 2\right)} \hbar \omega_{o} / 2 \tag{1.19}\\
& =k_{B} N \beta^{2} \hbar^{2} \omega_{o}^{2} / 4 \frac{1}{\cosh ^{2}\left(\beta \hbar \omega_{o} / 2\right)} \tag{1.20}
\end{align*}
$$

Now to plot $U(T)$, notice when $T \rightarrow+\infty, \beta \rightarrow 0^{+}, \operatorname{coth}\left(\beta \hbar \omega_{o} / 2\right)=\frac{e^{\beta \hbar \omega_{o} / 2}+e^{-\beta \hbar \omega_{o} / 2}}{e^{\beta \hbar \omega_{o} / 2}-e^{-\beta \hbar \omega_{o} / 2}} \sim \frac{1}{\beta \hbar \omega^{\prime}}$, therefore $U(\beta) \sim N \hbar \omega_{o} / 2 \frac{1}{\beta \hbar \omega_{o}}=\frac{N}{2} k_{B} T$; when $T \rightarrow 0^{+}, \beta \rightarrow+\infty$, $\operatorname{coth}\left(\beta \hbar \omega_{o} / 2\right) \sim 1$, so $U(\beta) \sim$ $N \hbar \omega_{o} / 2$.
To plot $C_{V}(T)$, notice when $T \rightarrow+\infty, \beta \rightarrow 0^{+}, \cosh \left(\beta \hbar \omega_{o} / 2\right)=\frac{e^{\beta \hbar \omega_{o} / 2}-e^{-\beta \hbar \omega_{o} / 2}}{2} \sim \beta \hbar \omega_{o} / 2$, thus $C_{V} \sim k_{B} N \beta^{2} \hbar^{2} \omega_{o}^{2} / 4 \frac{4}{\beta^{2} \hbar^{2} \omega_{o}^{2}}=N k_{B}$; when $T \rightarrow 0^{+}, \beta \rightarrow+\infty$, and $\cosh \left(\beta \hbar \omega_{o} / 2\right)=$ $\frac{e^{\beta \hbar \omega_{o} / 2}+e^{-\beta \hbar \omega_{o} / 2}}{2} \sim e^{\beta \hbar \omega_{o} / 2} / 2$, then $\frac{\beta^{2}}{e^{\beta \hbar \omega_{o} / 2}} \sim 0 \Rightarrow C_{V}(T=0)=0$.

Marking scheme

- 2 pt for knowing the definition of internal energy.
- 2pts for getting the correct partition function.
- 3pts for getting the correct internal energy.
- 2 pt for knowing the definition of specific heat.
- 3pts for getting the correct specific heat.
- 2 pt if the plot of energy starts at a nonzero point at $T=0$.
- $2 p t$ if the plot of energy grows linearly when T is large.
- 2 pt if the plot of specific heat starts at 0 when $T=0$.
- 2 pt if the plot of specific heat goes to a constant when T is large.
- You get half mark if results differ by a numerical constant.
((20pts)iii) Now let's look at $Z_{\text {rot }}$ for the rotational motion of the diatom. The low T behaviour is easy, because the terms in the sum in the expression for $z_{I}(\beta)$ decrease rapidly with increasing j. By taking just the first 2 terms in the sum, find a simple low-T result for $z_{I}(\beta)$, and from this find expressions for $U_{\text {rot }}(T)$ and $C_{\text {rot }}(T)$ for the N diatoms in the low T regime. For the high-T behaviour we need to approximate the sum as an integral. Using the result $\int_{0}^{\infty} d x x e^{-x^{2}}=1 / 2$, find a simple result for $z_{I}(\beta)$ in the high-T regime where $k T \gg \hbar^{2} / 2 I$, with the result $\propto k T$. Then, from this result, find the energy Urot and $C_{\text {rot }}(T)$ for the N diatoms in the high T regime. Finally, plot sketches for $U_{\text {rot }}$ and $C_{\text {rot }}(T)$ for the N diatoms as a function of T; you can use the expression you found for the low-T and high-T results, and then just simply interpolate between them.

Solution

Low T limit: take the first two terms in the sum, we have $z_{I}=1+3 e^{-\beta \hbar^{2} / I}$, therefore

$$
\begin{equation*}
U_{\mathrm{rot}}=-N \frac{1}{z_{I}} \frac{\partial z_{I}}{\partial \beta}=-N \frac{1}{1+3 e^{-\beta \hbar^{2} / I}}\left(-3 \hbar^{2} / I\right) e^{-\beta \hbar^{2} / I}=\frac{3 N \hbar^{2} / I}{3+e^{\beta \hbar^{2} / I}} \sim 0 \tag{1.21}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\mathrm{rot}}=-k_{B} \beta^{2} \frac{\partial U}{\partial \beta}=-k_{B} \beta^{2} 3 N \hbar^{2} / I\left(-\frac{1}{\left(3+e^{\beta \hbar^{2} / I}\right)^{2}} \hbar^{2} / I e^{\beta \hbar^{2} / I}\right)=\frac{3 k_{B} \beta^{2} N \hbar^{4} / I^{2} e^{\beta \hbar^{2} / I}}{\left(3+e^{\beta \hbar^{2} / I}\right)^{2}} \sim 0 . \tag{1.22}
\end{equation*}
$$

High T limit:

$$
\begin{equation*}
z_{I}=\sum_{j=0}^{+\infty}(2 j+1) e^{-\beta \hbar^{2} j(j+1) / 2 I} \sim \int_{0}^{+\infty}(2 j+1) e^{-\beta \hbar^{2} j(j+1) / 2 I} d j \tag{1.23}
\end{equation*}
$$

Next we perform a change of variable, let $x^{2}=\frac{\beta \hbar^{2}}{2 I} j(j+1), 2 x d x=\frac{\beta \hbar^{2}}{2 I}(2 j+1) d j$, we then have

$$
\begin{equation*}
z_{I}=\int_{0}^{+\infty} \frac{4 I}{\beta \hbar^{2}} x d x e^{-x^{2}}=\frac{4 I}{\beta \hbar^{2}} \frac{1}{2}=\frac{2 I}{\beta \hbar^{2}}, \tag{1.24}
\end{equation*}
$$

from which we can extract the energy and specific heat in the high T limit:

$$
\begin{align*}
U_{\mathrm{rot}} & =-N \frac{1}{z_{I}} \frac{\partial z_{I}}{\partial \beta}=-N \frac{\beta \hbar^{2}}{2 I} \frac{2 I}{\hbar^{2}} \frac{-1}{\beta^{2}}=N k_{B} T \tag{1.25}\\
C_{\mathrm{rot}} & =\frac{\partial U}{\partial T}=N k_{B} \tag{1.26}
\end{align*}
$$

Marking Scheme

- 2 for knowing definition of the internal energy
- 3 for getting the correct energy in small T limit.
- 2 for knowing definition of the specific heat.
- 3 for getting the correct specific heat in small T limit.
- 3 for knowing how to express partition fucntion as an integral.
- 3 for evaluating the integral correctly.
- 2 for getting the energy in the large T limit.
- 2 for getting the specific heat in the large T limit.
- You get half mark if results differ by a numerical constant.
(10pts)(iv) The third contribution to the specific heat coming from the translational degrees of freedom is just that from a 3-dimensional classical Maxwell-Boltzmann gas. Typically, the vibrational zero point energy $\hbar \omega_{o} / 2 \gg E_{o}$, where $E_{o}=\hbar^{2} / 2 I$ is the rotational zero point energy. Using the results you have derived above for $C_{V}^{\text {rot }}(T)$ and $C_{V}^{\text {vib }}(T)$, sketch the result you expect for the TOTAL specific heat $C_{V}(T)$ for a gas of N diatoms, as a function of T. Explain the limiting behaviour you find for $C_{V}(T)$ for (i) high T (ie., for $T \gg \hbar \omega_{o} / 2$) and for low T (ie., for $k T \ll \hbar^{2} / 2 I$)?

Solution

There will be three regions of interests: $k_{B} T \ll \hbar^{2} / 2 I, \hbar^{2} / 2 I \ll k_{B} T \ll \hbar \omega_{o} / 2$ and $k_{B} \gg \hbar \omega_{o} / 2$. In the low T region, $C_{V}^{\text {rot }} \sim C_{V}^{\text {vib }} \sim 0$, thus $C_{V} \sim C_{V}^{\mathrm{tr}}=\frac{3}{2} N k_{B}$; in the middle region $C_{V}^{\text {rot }} \sim$ $N k_{B}, C_{V}^{\text {vib }} \sim 0$, thus $C_{V} \sim C_{V}^{\text {rot }}+C_{V}^{\mathrm{tr}}=\frac{5}{2} N_{B}$; in the high T limit $C_{V}^{\text {vib }} \sim N k_{B}$, thus $C_{V} \sim$ $C_{V}^{\mathrm{tr}}+C_{V}^{\mathrm{rot}}+C_{V}^{\mathrm{vib}}=\frac{7}{2} N k_{B}$

Marking Scheme

- 1 pts for understanding the existence of 3 different temperature regions.
- 3pts for getting the value correct in the low T limit.
- 3pts for getting the value correct in the middle T region.
- 3pts for getting the value correct in the high T limit.

2 Interstellar Grain

The space in galaxies is full of 'interstellar grains', ie., particles made of carbon or silicate materials which drift through a very rarified interstellar gas, largely composed of Hydrogen atoms. They are tpically microns in size, sometimes larger. The H atoms can stick to the grains and react with the C to form hydrocarbon molecules - this leads to the gradual synthesis of very complex hydrocarbons on the grains, a fact which may be important for the origin/evolution of life. Let's assume that the gas of H atoms in the interstellar medium, with density ρ and temperature T , is in thermodynamic equilibrium with the H atoms stuck to the grain surface. Suppose also that on a given grain there are N_{o} sites available for H atoms to stick, one for each site - for simplicity we assume the (negative) binding energy is U_{o}.
(12pts)2(a): Suppose that the chemical potential of the H atoms on the grain and in space is μ; what is the grand partition function for the atoms?

Solution

There are N_{0} sites, each can either be occupied by an H atom or not. When a site is occupied, the particle number is 1 and the energy is $-U_{o}$. Therefore the grand canonical partition function for a single site is $\xi=1+e^{-\beta\left(-U_{o}\right)+\beta \mu \times 1}=1+e^{\beta U_{o}+\beta \mu}$, the total grand canonical partition function for n_{o} sites is then

$$
\begin{equation*}
\Xi(\beta, \mu)=\xi^{N_{0}}=\left(1+e^{\beta U_{o}+\beta \mu}\right)^{N} \tag{2.1}
\end{equation*}
$$

Marking Scheme

- 2 pts for knowing the definition of grand canonical partition function.
- $5 p t s$ for getting the single site partition function.
- 5pts for getting the total partition function.
(10pts)2(b): What is the expectation value $\langle m\rangle$ of the fraction M / N_{o}, where M is the number of atoms which are stuck to the grain surface, as a function of μ, U_{0}, and the temperature T ?

Solution

the average number of atoms in a single site is:

$$
\begin{equation*}
\left\langle M_{0}\right\rangle=0 \times \frac{1}{\xi}+1 \times \frac{e^{\beta U_{o}+\beta \mu}}{\xi}=\frac{e^{\beta U_{o}+\beta \mu}}{1+e^{\beta U_{o}+\beta \mu}}=\frac{1}{1+e^{-\beta U_{o}-\beta \mu}} \tag{2.2}
\end{equation*}
$$

then since particle number is extensive, the total average number of particles is:

$$
\begin{equation*}
\langle M\rangle=N_{o}\left\langle M_{0}\right\rangle=\frac{N_{o}}{1+e^{-\beta U_{o}-\beta \mu}}, \tag{2.3}
\end{equation*}
$$

and the fraction M / N_{o} is just $\left\langle M_{0}\right\rangle$.

Marking Scheme

- 5pts for showing understanding of how to calculate average values of quantities.
- 5 pts for getting the correct average value of m.
(13pts)2(c): If the chemical potential of a gas of H atoms of mass m at temperature T and number density $\rho=p / k T$ per unit volume is given by

$$
\begin{equation*}
\rho=\frac{1}{4 \pi^{2}}(2 m)^{3 / 2} \int_{0}^{+\infty} \frac{d E}{\hbar^{3}} E^{1 / 2} e^{-\beta(E-\mu)} \tag{2.4}
\end{equation*}
$$

then we can determine $\langle m\rangle$, now in terms of pressure p, U_{o}, and the temperature T. Find this result, and evaluate it for a pressure $p=10^{-18}$ atmospheres, a temperature of 40 K , and assuming $U_{o}=5 \mathrm{eV}$ (recalling that $1 e V \sim 11,604 K$). You will need to find out what is atmospheric pressure from the literature.

Solution

The question is essentially asking you to change variable from $\left(\beta, \mu, U_{o}\right)$ to (β, p, U_{o}) using the relation given above. First we solve the integral:

$$
\begin{align*}
\rho & =\frac{1}{4 \pi^{2}}(2 m)^{3 / 2} e^{\beta \mu} / \hbar^{3} \int_{0}^{+\infty} d E E^{1 / 2} e^{-\beta E} \tag{2.5}\\
& =\frac{1}{4 \pi^{2}}(2 m)^{3 / 2} e^{\beta \mu} / \hbar^{3} \frac{\sqrt{\pi}}{2 \beta^{3 / 2}}=\left(\frac{m}{2 \pi \beta \hbar}\right)^{3 / 2} e^{\beta \mu} \tag{2.6}\\
\Rightarrow & e^{\beta \mu}=\rho\left(\frac{2 \pi \beta \hbar}{m}\right)^{3 / 2} \tag{2.7}
\end{align*}
$$

therefore the average atom number can be expressed as

$$
\begin{equation*}
\langle m\rangle=\frac{1}{1+e^{-\beta U_{o}-\beta \mu}}=\frac{1}{1+e^{-\beta U_{o}} \frac{1}{\rho}\left(\frac{m}{2 \pi \beta \hbar}\right)^{3 / 2}} \sim 1 \tag{2.8}
\end{equation*}
$$

Marking Scheme

- 5 for doing the integration correctly.
- 3 for expressing μ in terms of other variables.
- 3 for getting the correct expression for $\langle m\rangle$
- 2 for evaluting $\langle m\rangle$ correctly

