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PHYS 403: REVISION QUESTIONS (short) 2022

NOTES: The exam is divided into 6 short questions (in section A) and 4 long questions (in section B). You must
answer a total of THREE short questions from section A, and TWO long questions from section B. You can choose
which questions you decide to answer. Note that extra marks will not be given for answering more than 4 questions
in section A or 2 questions in section B; if you do, we will simply choose those questions which give you the highest
mark.

Here is a set of short questions. You should take ROUGHLY 20 mins to do any one of them (some of them may
take a little longer). I will send out answers to them all in a few days.

—————————————

SECTION A: SHORT QUESTIONS

QUESTION A.1: QUANTUM GASES

(i): Why does the diameter of a white dwarf decrease when its mass increases?

In a non-relativistic analysis, this is because the negative gravitational energy increases faster with mass (going
as M2) than the positive degeneracy energy increases (this goes as M5/3, although you don’t have to derive this).
Hence increasing the mass decreases the radius at which the energy is minimized. Roughly speaking, the gravitational
attraction becomes ever more important as M increases. The same is even more true in a relativistic analysis.

(ii) Why does the chemical potential of a gas (Bose, Fermi, or classical) never increase (and almost always decreases)
as one raises the temperature?

Roughly speaking this is because the free energy F = U − TS is governed by the behaviour of the entropy when
T is large (and also when the density of the system is low); in both these cases the occupation numbers of the states
are low. The entropy is increased by allowing the system to spread over more states. Since the chemical potential
µ = (∂F/∂N), and adding a particle will cause an increase in entropy, we get µ < 0.

One can see this purely mathematically as well, by examining the usual equation relating N to µ for a Fermi or
Bose gas; at high T this can only be satisfied by allowing µ to decrease relative to the T = 0 value.

There are other ways to explain this as well.

QUESTION A.2: 2-LEVEL SYSTEMS

(i): Consider a set of N non-interacting 2-level systems (TLS), with level energies E1 and E2 for each of the TLS.
At temperature T , what is the average energy U(T ) for the total system? Derive also the specific heat CV (T ).

The average energy for the system is easy, since there are only 2 levels; we have

U(T ) = N
E1e

−βE1 + E2e
−βE2

e−βE1 + e−βE2
= N

E1 + E2e
−β∆o

1 + e−β∆o

where ∆o = |E1 − E2|. The specific heat is easily found from this to be

CV (T ) = N

(
∆o

kT

)2
e−∆o/kT

(1 + e−∆o/kT )2

(ii) Find expressions for U(T ) and CV (T ) when kT � |E1 − E2|. You should find the T =∞ result, and also the
first correction to this result, for finite (but very large) T .

The high-T limiting result for the energy is obtained by expanding the exponent for small β; the result is

U(T ) = N

[
1
2 (E1 + E2)− ∆2

o

4kT

]
(T →∞)
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and this just gives the specific heat in this limit as

CV (T ) =
N

4

(
∆o

kT

)2

(T →∞)

QUESTION A.3: FERMI DISTRIBUTION

(i): The grand canonical partition function for a single fermion state of energy ε is z(ε) =
∑
n exp[nβ(µ − ε)] =

1 + exp[β(µ − ε)]. Show that the mean occupation number for this state is just the Fermi function, ie., that 〈n〉 →
f(ε− µ) ≡ {1 + exp[β(ε− µ)]}−1, which we also write as f(x) = [1 + eβx]−1, where x = (ε− µ).

This is a standard exercise, done in the course notes. We write for the probability P (n) = z−1eβn(µ−ε) = z−1enβx,
and then the expectation value 〈n〉 = z−1

∑
n nP (n), which since n = 0 or n = 1 is just

〈n〉 =
1

[1 + exp[β(ε− µ)]

(ii) Then show that the probability of finding n particles in this state is

P (n) =
[1− f(−x)]

n

[f(−x)]n−1

This is a little finicky because of the “−” signs. We have P (n) = z−1eβn(µ−ε) ≡ e−nβx/[1 + e−βx]. Now compare
with the expression given above

P (n) =
(1− f(−x))

n

f(−x)n−1
→ e−nβx

1 + e−βx
QED.

QUESTION A.4: INTERATOMIC POTENTIAL

(i): Consider the 1-dimensional potential

V (x) = Vo

[(ao
x

)12

− 2
(ao
x

)6
]

Find the value of x for which V (x) is a minimum, and find the “curvature” d2V/dx2 at this point. What is the
frequency of small oscillations of a particle of mass M about the minimum in this potential?

The minimum of the potential, given by the value of x for which V (x) is minimized, is at x = ao. The 2nd derivative
is

d2V

dx2
=

12Vo
x2

[
13
(ao
x

)12

− 7
(ao
x

)6
] ∣∣∣∣
x=ao

→ 72
Vo
a2
o

This SHO potential then has a small oscillation frequency ωo, for a mass M , given by ω2
o = 72(Vo/a

2
oM).

(ii) Draw a picture of the potential V (x), and explain briefly how it can be used to model interatomic interactions.
For such interaction, what do you think are typical values for Vo and ao?

The picture is straightforward. For the size of the constants, the key here is to point out that the short range
repulsion is from the Pauli principle, and the long-range attraction is van der Waals; such forces exist between all
atomic clouds. The numbers here are just part of general knowledge about matter in the physical world. All atoms
have more or less the same size, of order Angstroms; thus ao is one or two Angstroms. The size of Vo is more difficult.
All chemical energies are of order a few eV . However we notice that Vo is just the depth of the potential well, where
the Pauli and van der Waals enegies balance. We can guess that this energy is roughly that involved in making a
simple system stay liquid or solid, as opposed to evaporating. This would then give Vo ∼ 100 K, ie., Vo ∼ 10−3 eV.
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QUESTION A.5: ARGON in ATMOSPHERE

(i): Roughly 1 percent of the volume of the earth’s atmosphere is composed of 40Ar. Suppose you are in a bedroom
with a volume of 60 m3. Roughly how many 40Ar atoms are in the room, and what is their total mass?

NB: This question was extracted from an exam quiestion from last year, but it was a TAKE HOME exam - so
studentds had access to the internet, the values of constants, etc. I would never set a question in this form in an
in-person exam, where you waon’t have these numbers available.

I did say that you should estimate this “roughly”. So you could say something like the following:
“103 kg of water, with molecular weight 18, occupies 1 m3. Atmospheric pressure supports a column of water

roughly 10m high (this is easy to show - atmospheric pressure is ∼ 105Nm−2 and g ∼ 10 ms−2, so atmospheric
pressure is equivalent to a weight ∼ 104 kgm−2). The scale height of the atmoshere is ∼ 5 km, so the atmospheric
pressure is equivalent to that coming from a 10 km column of air at atmospheric density. Thus 1 kg of air occupies
roughly 1 m3. The atomic weights of N2 and O2 molecules are 28 and 32 respectively, so the mass fraction of air
coming from 40Ar is roughly 4/3×0.01 ∼ 0.013, with total mass ∼ 13g, ie., roughly 1/3 mole of 40Ar. Since Avogadro’s
number is 6× 1023, this implies we have roughly 2× 1023 atoms of 40Ar per cubic metre. Multiplying by 60, we then
get a number N ∼ 1.2× 1025 atoms in the bedroom, with mass of roughly 0.78 kg.”

There will be many ways to get this rough answer, so I won’t try to guess them all.

(ii) In MKS units, roughly what is the total thermal energy associated with the 40Ar atomic motion?

The energy per atom is 3kBT/2. Let’s assume room temperature (ie., T ∼ 300K). Then, using kB = 1.38 ×
10−23m2kgs−2K−1, we have a total thermal energy in the room given by E = 3NkBT/2 ∼ 7.45 × 104J, at room
temperature.

QUESTION A.6 BLACK BOXES:

(i) Suppose I surround the sun (considered to be a black body at a temperature Ts) with a perfectly black shield.
Assuming the shield is indestructible, it will come to an equilibrium temperature TB , governed by the radiative energy
flow from the sun and the energy radiated by the shield. Assuming that the universe outside the shield can be treated
as a reservoir at temperature T = 0, show that the equilibrium temperature of the shield is TB = (Ts/2)1/4. Assume
the shield is close to the sun’s surface, so that the surface area of the shield is the same as that of the sun.

(ii) Now suppose instead I replace the single shield with 2 concentric shields. What is the temperature T1 of the
first (inner) shield, and T2 for the second outer shield?

(ii) Finally let us generalize the argument to a set of N concentric black shields. What is the temperature Tn of
the n-th shield, for 1 ≥ n ≥ N?

In this problem, suppose the radiative energy flow (a power) from the sun, per unit area, is Ps, and the energy flow
from the shield, per unit area (inwards and outwards) is PB in each direction. Then the net flow from sun to shield is
Ps−PB , and the net flow out from the shield is PB . For equilibrium these have to be the same, so we have Ps = 2PB .
Then from the Stefan-Boltzmann law, according to which P ∝ T 4, it follows that TB = Ts2

−1/4. This answers (i).
For (ii), we simply extend the above argument. We define powers Pj , with j = 1, 2 emitted in each direction

by the shields, and a power Ps as before from the sun. We then go through the same argument, to find that
Ps − P1 = P1 − P2 = P2. This gives us Ps = 3P2, and P1 = 2P2, and so we get T2 = Ts3

−1/4 and T1 = Ts(2/3)1/4.
The problem in (iii) is just a simple inductive generalization of the above.

QUESTION A.7 FREE ENERGY: For a gas of particles, the infinitesimal changes dS in the entropy and
dV in the volume of the gas container result in a change dU in the energy, given by dU = TdS − pdV , where T is the
temperature and p the pressure in the gas.

(i) The free energy of the system is F = U − TS. Find an expression for the infinitesimal dF , and show that the
pressure is then given by the partial derivative p = −(∂F/∂V )|T , where T is held constant.

(ii) Suppose we are allowed to add particles to the gas as well, so that dU = TdS − pdV + µdN , where µ is the
chemical potential of the gas particles and N is their total number in the container. Assuming again that F = U−TS,
find an expression for µ in terms of a partial derivative of F ; make sure to specify what is held constant.
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This question is done in the notes and the slides.

QUESTION A.8 QUALITATIVE PHYSICS: Be quantitative if you can - but the answers also require
qualitative physical understanding.

(i): Why does the entropy of a pair of systems usually increase when one combines them physically into a single
system? When does it not increase? If one then takes a single system, and separates it into two systems, the entropy
also increases - why is this?

(iI): Suppose I have two sets of spin-1/2 systems, each containing N spins in an applied magnetic field which splits
each spin level by an amount 2∆o. We assume that they are in every way identical except that one of the N -spin
systems is at temperature T = 0, while the other is at temperature T =∞.

Now, I combine the 2 sets of spins. What is the final energy of the combined system? And if I do the combination
in an irreversible way, what do you think is the final temperature?

The entropy of a pair of systems is always greater than equal to that of the 2 systems before they are combined, by
the 2nd law of thermodynamics. It will be greater if the process is irreversible, the same if the process is reversible.
The same is true of we separate a single system into two - the 2nd law applies to any changes.

A set of spins at T = 0 has all the spins in the ground state. Suppose the energies of the individual spins are
ε± = ±∆o. Then the ground state energy of N spins is Eo = E(T = 0) = −N∆o. If the spins are at T = ∞ the
population if up and down spins is the same - the energy of the system is then E(T =∞) = 0.

If we combine the 2 sets of spins, then the energy must be the same - we now have a total energy E = −N∆o for
a set of 2N spins, ie., an average energy for the j-th spin of εj = −∆o/2.

To find the temperature, we must assume that the combination process is irreversible, because otherwise the spins
would not equilibrate to a new temperature. To find this temperature, we could simply guess that it is given roughly
by kT ∼ ∆o, since that is the energy where we expect things to cross over between the T = 0 and T = ∞ limiting
results. This would be good enough for a qualitative answer.

NB: If we wanted to find it exactly, we could simply use the result that for a set of 2-level systems with splitting
2∆o, the energy is E(T ) = −∆o tanh(β∆o) per spin. Since we know from above that this energy is in our case equal
to −∆o/2, we have −∆o tanh(β∆o) = −∆o/2, so that the answer is eventually

kT =
∆o

tanh−1( 1
2 )

(0.1)

and we see that our guess that kT ∼ ∆o was a reasonably good one.

QUESTION A.9: RADIATION PRESSURE The radiation pressure p from photons is equal to p = 4J/3c,
where J is the radiation flux. A star like the sun emits black-body radiation with flux J = σT 4 per unit area of its
surface, where temperature T is measured in Kelvin units; here σ = 5.67 × 10−8Wm−2K−4, and the sun’s surface
temperature is 6, 000 K. The radius of the sun is RS ∼ 0.7× 106 km.

(i): Consider the forces on an electron at the sun’s surface. If the cross-section for photon-electron scattering is
∼ 6.6× 10−29 m2, and the electron mass is ∼ 9× 10−31 kg, then how do the gravitational and radiation forces on the
electron at the sun’s surface compare (assume here that all the photon energy is taken up by the electron)? You can
assume that the solar mass is 2× 1030 kg, and that the gravitational constant G = 6.67× 10−11m3kg−1s−2.

NB: This question would certainly take longer than 20 mins - more like 35 mins

Here is what I find. The radiation flux at the sun’s surface is J(RS) = σT 4, which I get to be J(RS) = 4.35 ×
107 Wm−2. This gives a pressure p(RS) = 4J(RS)/3c = 0.327Nm−2, using a value c = 2.998 × 108 ms−1. On an
electron, with cross-section 6.6 × 10−29 m2, this gives a force fp(RS) ∼ 2.157 × 10−29 N . The gravitational force
is just fg(RS) = −GMSme/R

2
S , which using the numbers given (and a mass me = 9.11 × 10−31kg for the electron)

the result fg(RS) = −2.45 × 10−28 N . Thus in this calculation the total force f(RS) = fp(RS) + fg(RS) is almost
entirely gravitational (in reality, charged particles are accelerated away from the sun by shock waves and coronal mass
ejections).

(ii) How do the radiation force and gravitational force on the electron behave as a function of the distance r from
the sun (for r > Ro)?. What then is the equation of motion for r(t), and what is its solution as a function of time, if
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the electron starts at a distance ro = r(t = 0) from the sun?

Both the radiation force and the gravitational force fall off like 1/r2. The radial equation of motion of the particle
is then just mr̈ = −fg(r), neglecting the radiation force, so that r̈(t) = −GMS/r

2. Although this is not part of the
course, the easiest way to solve this problem is to use the conservation of total energy for the electron. I did not
specify the initial velocity, but suppose that at r = ro, we have ṙ = 0. The we have the result, by conservation of
energy, that(

dr

dt

)2

= 2GMS

(
1

r(t)
− 1

ro

)
=⇒ t =

1

(2GMS)1/2

∫ r(t)

ro

dr

[
1

r
− r−1

o

]−1/2

and I don’t expect anyone to do more than this.

QUESTION A.10 ENERGY FLUCTUATIONS: We start from the canonical partition function Z for a system
S.

(i) Show that the “mean energy squared” of the system S is given by 〈E2〉 = Z−1(∂2Z/∂β2).

(ii) Using this result work out an expression for the mean squared energy fluctuation in the energy of the system,
written as 〈∆E2〉 = (〈E2〉 − 〈E〉2); and then show that it can be written as

〈∆E2〉 = −∂〈E〉
∂β

these derivations are done in the notes and on the slides

—————————————

END of ‘MOCK’ SHORT QUESTIONS


