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PHYS 403: FINAL EXAM 2021 – MARKING SCHEME (SECTION B)

Each question nominally counts for 30 points. In some cases there will be bonus marks so it is possible for somebody
to get more than 30 for a question, and it is possible for their total mark to exceed 60, for the 2 questions they have
to answer. Please be flexible in marking and give a bonus where deserved.
No need whatsoever to provide any details or explanations of the marks you award - but you should indicate what

marks you give for each part of the questions you mark, and also, wherever there is any ambiguity or subtlety about
how you award a mark, make some sort of note that will allow you, at some later date, to recall your reasoning for
awarding the mark that you did give.
Please (i) compile an excel page that shown which mark you gave to each student for each question, along with a

final total, for section B, for each student; and then (ii) add this mark to the main Excel page which has all the marks
for the different homework assignments.

—————————————

SECTION B: LONG QUESTIONS (ANSWER 2 of THESE)

QUESTION B.1: SUPERFLUID 4He Superfluid 4He is the best known neutral superfluid; this question
looks at some of its properties.

(i): Draw the energy dispersion relation for quasiparticles in superfluid 4He (ie., the plot of the energy ϵp as a
function of the momentum p). Now, explain why it is that an object with mass M ≫ m4 (where m4 is the mass of
a 4He atom), which is moving through superfluid 4He, will move without friction until it reaches a critical velocity
vc ∼ min(ϵp/|p|). You should consider the problem at finite T , where thermally excited quasiparticles already exist.

This material is in the course notes. The 4He dispersion relation graph should show the phonons, rotons, etc., and
should show the energy and momentum scales, in appropriate units. The argument for the critical velocity needs
to be done first as in the notes, by assuming the object has initial momentum MV and excites a quasiparticle with
momentum ~k and energy ϵk, leaving the object with final momentum MV′. By doing the elementary kinematics,
and dropping the “recoil term” ~2k2/2M , we then get the condition that vc ∼ min(ϵp/|p|), when V is parallel to k
(see notes).
I am not sure how many of them will try to extend this argument to include scattering off thermally excited

quasiparticles. The energy and momentum conservation equations are then (see course notes) MV+~k = MV′+~k′

and 1
2MV 2 + ϵk = 1

2M(V ′)2 + ϵk′ . If we again do the kinematics, and drop the recoil term (now equal to ~2(|bfk −
k′|2/2M), we get the condition vc ∼ min(ϵk − ϵk′/~|k − k′|), with k parallel to k′.

I give TOTAL mark = NINE (9) points. This includes 1 for the drawing, 3 for the T = 0 explanation, and 5
for the finite T explanation.

(ii) Suppose that the object of mass M were to be moving in some fluid along the x̂ direction. Suppose also that
this fluid has a constant viscosity coefficient η, so that there is a force −ηv(t) acting on the particle in the direction
opposite to its velocity v(t) along x̂. Find the equation of motion of the particle, assuming that there is also an
external force f(t) acting on it along x̂.
Then show that if (i) this force is f(t), and (ii) the initial velocity at t = 0 is v(t = 0) = vo, then the solution to

the equation of motion is

v(t) = voe
−γt +

∫ t

0

dt′
f(t′)

m
e−γ(t−t′)

where γ = η/M .
Now, suppose that the force is actually a constant in time, so that f(t) → fo. Show that after a long time has

elapsed, the particle will then reach a constant terminal velocity vf , and give the result for vf in terms of fo, γ, and
M . How could you have very simply derived this result without solving the equation of motion?

The derivation of the result is just a standard exercise in differential equations. The terminal velocity when f(t) = fo
is obtained by going to long times (when γt ≫ 1). It is easily deduced by balancing forces, to be vf = fo/η ≡ fo/γM .

I give TOTAL mark = EIGHT (8) points. This includes 1 for the eqtn. of motion, 6 for deriving the solution,
and 1 for the terminal velocity.
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(iii): In a superfluid things are a little different because the friction depends on the velocity. Suppose that the
friction coefficient in the superfluid behaves with velocity according to η(v) = ηo(v − vc) θ(v − vc), where θ(x) is just
the Heaviside or ”step” function (so θ(x) = 0 for x < 0, and θ(x) = 1 for x > 0).
To solve the equation of motion here is complicated - but you can still find the new terminal velocity vf without

doing this. Find the result for vf .

The same arguments now give vf = vc + fo/ηo.

I give mark = TWO (2) points for this.

(iv): In a real superfluid one can also have quantized vortex ring excitations, which behave like quasiparticles in
that they can also be excited by interactions with an external body. For a circular ring, one has approximately that
the energy E of the ring and the momentum p of the ring depend on the radius R of the ring according to

E ∼ 1
2ρκ

2R ln
R

ao
; p ∼ πρκR2

where ρ is the superfluid density, κ the circulation quantum, and ao ∼ 0.1 nm is a vortex core radius.
If in analogy with the quasiparticle argument, we suppose that the critical velocity for formation of a vortex ring is

given by vc ∼ min(E/p), then show that for a superfluid in which R can be as large as you like (a superfluid moving
past an infinitely large object), then vc → 0. Show also that if the superfluid is moving through a cylindrical tube of
radius Ro, then vc is finite, and give an expression for it.
Finally, noting that the velocity of the vortex ring excitation itself is given by v = dE/dp, find an expression for

the velocity v(R) as a function of the vortex ring radius, and sketch a graph of it.

From the formulas for E and p we have

vc = min(E/p) = min

[
κ

2πR
ln

R

ao

]
and this is minimized when R → ∞. In a cylinder of radius Ro, it is minimized when R = Ro, so that

vc =

[
κ

2πRo
ln

Ro

ao

]
The velocity v is given by

v(R) =
dE

dR

dR

dp
=

κ

4πR

[
ln

R

ao
+ 1

]
using dR/dp = (2πρκR)−1. The sketch is easy.

I give TOTAL mark = ELEVEN (11) points. This includes 4 for the general result for the vortex critical
velocity, 2 for the critical velocity in a tube, 4 for the result for v(R), and 1 for the drawing.

QUESTION B.2: DIATOMIC GAS A diatomic molecule has 3 degrees of freedom, viz., translational
motion of the molecular centre of mass, rotational motion abut the centre of mass, and vibrations in distance between
the 2 atoms. We will treat these different degrees of freedom as being independent, ie., with no coupling between
them. We assume the diatom is made from 2 atoms, each with mass m, and mean separation ao.

(i): The moment of inertia of the rotating diatom is I = 1/2ma2o. We also suppose that the frequency of small
harmonic oscillation of the distance x around the mean ao between the atoms is ωo.
Show that we can write the total canonical partition function Z for a gas of N such diatoms as Z = ZtrZrotZvib,

where Ztr comes from the translational degrees of freedom, where Zrot = zNI and Zvib = zNωo
, and show that

zI =
∞∑
j=0

(2j + 1) exp[−β~2j(j + 1)/2I] ; zωo =
∞∑

n=o

exp[−β~(n+ 1
2 )ωo]

You do not have to evaluate the translational term Ztr.
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The partition function is written as a product because the 3 degrees of freedom are independent. Both terms are in
the usual form z =

∑
i gi exp[−βEi], where gi is the degeneracy of the i-th state. For the rotator, Ej = ~2j(j +1)/2I

and gjj(j + 1); for the oscillator, En = ~(n+ 1
2 )ωo, and gn = 1.

This gets TWO (2) marks, one for each result.

(ii) Let us first consider the vibrational modes. Evaluate the partition function zωo
(β), and then show that the

vibrational contribution to the energy of the system is Uvib(β) = 1
2N~ωo coth(β~ωo/2). From this find also the

contribution Cvib
V (β) to the specific heat.

Finally, sketch the behaviour of both Uvib(β) and Cvib
V (β) as functions of the temperature T .

To get zωo(β), Uvib(β), and Cvib
V (β) are standard exercises for an oscillator. One gets, by summing the series for

zωo(β), and then doing the appropriate differentiations, that

zωo
(β) = 1

2cosech

(
~ωo

2kBT

)
; Uvib(β) = 1

2~ωo coth

(
~ωo

2kBT

)
; CV (T ) =

(
~ωo

2kBT

)2

kB cosech2

(
~ωo

2kBT

)
The sketches of the behaviour are also standard.

For the derivation of the 3 formulae, give a total of FIVE (5) marks. For the sketches give a total of THREE
(3) marks. If you want to slightly alter the weighting go ahead, but the TOTAL should add up to EIGHT (8)
marks.

(iii) Now let’s look at Zrot for the rotational motion of the diatom. The low T behaviour is easy, because the terms
in the sum in the expression for zI(β) decrease rapidly with increasing j. By taking just the first 2 terms in the sum,
find a simple low-T result for zI(β), and from this find expressions for Urot(T ) and Crot

V (T ) for the N diatoms in the
low T regime.

For the high-T behaviour we need to approximate the sum as an integral. Using the result
∫∞
0

dxx e−x2

= 1/2,

find a simple result for zI(β) in the high-T regime where kT ≫ ~2/2I, with the result ∝ kT . Then, from this result,
find the energy Urot and Crot

V (T ) for the N diatoms in the high T regime.
Finally, plot sketches for Urot and Crot

V (T ) for the N diatoms as a function of T ; you can use the expression you
found for the low-T and high-T results, and then just simply interpolate between them.

The low T behaviour is defined by βEj ≫ 1 for all j except j = 0, where Ej = ~2j(j + 1)/2I as we found above.
Physically this means that kBT ≪ than the gap 2∆̄ = ~2/I between the ground state and the first excited state, so
that β∆̄ ≫ 1. In this case we can ignore all terms in zI(β) except for the first two (ie., j = 0 and j = 1), to get

zI(β) → 1 + 3e−β~2/I ≡ 1 + 3e−2∆̄/kBT (
kB
∆̄

→ 0)

We then find, for N particles, that

Urot = −(∂ lnZ/∂β) =
3N~2

I
e−β~2/I ; Crot

V (T ) = −kBβ
2 ∂U

∂β
= 3NkB

(
~2β
I

)2

e−~2β/I (
kB
∆̄

→ 0)

The high T regime obtains when the spacing between at least the lowest levels ≪ kBT , ie., when kBT ≫ ∆̄,
with ∆̄ = ~2/I as before, ie., when β∆̄ ≪ 1. To convert the sum to an integral, we write x = j(j + 1), so that
dx = 2j + 1. It then follows that if the function f(j(j + 1)) ≡ f(x) varies slowly with x (ie., that df/dx ≪ 1, then∑

j(2j + 1)f(j(j + 1)) ≡
∫
dxf(x). Thus we have

zI(β) =

∞∑
j=0

j(j + 1) e−β∆̄ j(j+1) →
∫ ∞

0

dx e−β∆̄x =
kBT

∆̄
≡ 2IkBT

~2
(
kB
∆̄

→ ∞)

Then, for N particles, it immediately follows that

Urot = NkBT ; Crot
V (T ) = NkB (

kB
∆̄

→ ∞)

Note that in the question I gave them the integral
∫∞
0

dxx e−x2

= 1/2, which would be used if I had made the

substitution x2 = j(j + 1) above, nut of course it comes to the same thing.
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To draw graphs, we note that the energy and specific heat are exponentially small for low T , with energy ∝ T , and
specific heat ∼ constant, for high T , with the crossover at kB ∼ ∆̄.

The TOTAL mark here will be SIXTEEN (16) MARKS.
For the low T results, give a total of SIX (6) marks, ie., 2 each for the partition function, the energy, and the

specific heat.
For the high-T results, give a total of TEN (10) marks, with 8 for the derivation using the integral, and 2 for the

results for U and CV .

(iv) The “third” contribution to the specific heat coming from the translational degrees of freedom is just that from
a 2-dimensional classical Maxwell-Boltzmann gas. Typically, the vibrational zero point energy ~ωo/2 ≫ ~Eo, where
Eo = ~2/2I is the rotational zero point energy. Using the results you have derived above for Crot

V (T ) and Cvib
V (T ),

sketch the result you expect for the TOTAL specific heat CV (T ) for a gas of N diatoms, as a function of T . Explain
the limiting behaviour you find for CV (T ) for (i) high T (ie., for T ≫ ~ωo/2) and for low T (ie., for kT ≪ ~2/2I)?

There are 3 temperature regimes, viz., (a) the low-T regime, when T < T1 = ~2/2IkB ; (b) the intermediate regime,
when T1 < T < T2 = ~ωo/2kB , and (c) the high-T regime, when T > T2. Well below T < T1 we have the free
Maxwell-Boltzmann gas result that CV (T ) = 3NkB/2. In the intermediate regime we have the extra rotational
contribution, which flattens out at NkB , so that now CV (T ) ∼ 5NkB/2. Finally, in the high-T regime, we get the
oscillator contribution which rapidly flattens out to NkB , so that we get CV (T ) ∼ 7NkB/2. So a graph would show
these flat regions with a smooth crossover between them.

For the correct sketch, and a proper understanding of how to get it, give FOUR (4) marks.

GRAND TOTAL = 30 MARKS

QUESTION B.3: The YOUNG and the OLD UNIVERSE Near the beginning its life, the universe
was composed of a variety of fermionic particles, plus photons. Near the end of its life (using extrapolations from
what we already know), it will be a mixture of black holes and photons.

(i) Describe the universe as it was until a time t = τo after the Big Bang, where τo ∼ 400, 000 yrs (you can ignore
the time in the first few years after the Big Bang). What happened around t ∼ τo, and why? Why did this happen
when the temperature T ∼ 4, 000K?

During the time period in question, the universe was an expanding hot plasma composed largely of electrons,
positrons, neutrinos, some heavier nucleons, and photons. The photons scattered strongly off charges, so the photons
were in dynamic thermal equilibrium with the matter.
However, as the temperature fell, the charged articles began to combine into neutral objects. After the electrons

and positrons combined, all that was left was for nucleons to find electrons to form atoms. The key process as the
combination of protons and electrons to form neutral H. This happened at a temperature ∼ 4, 000 K, much lower
than the ionization energy of H, simply because the gas had a rather low density. NB: the students need to explain
why a low-density gas will ionize at a much lower temperature than the ionization energy).
The recombination suddenly made the universe transparent to photons, which have been traveling ever since, and

constitute the “microwave background”.

For this section give SIX (6) marks, with 2 for the explanation of why the charged plasma is opaque and the
neutral plasma is transparent, and 4 for explaining why recombination happens at 4, 000K. If any students try to give
a quantitative explanation of why 4, 000K, and give a good argument, they should get bonus marks.

(ii) In the earlier stages of the universe (for t ≪ τo), we can assume that the system is ultra-relativistic, meaning
that the fermion particle energy ϵ ≫ mc2, where m is the fermion rest mass. We can also assume the system is at very
high temperature, so that |µ|/kT → 0. Under these conditions, show that the energy of a fermion with momentum p
is ϵp ∼ pc, and find expressions for (a) the number density ρ = N/V , and (b) the energy density u = U/V , for the
fermions - showing in particular that u ∝ T 4. You can write the answers in terms of the definite integrals

Fn =

∫ ∞

0

dx
xn

ex + 1

which you do not need to evaluate.
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To show that ϵp = pc, we simply note that a relativistic particle with rest mass m has energy dispersion E2 =
p2c2 +m2c4. Taking the square root of this and expanding for pc ≫ mc2, we get E = [pc+ 1

2m
2c3/p+ · · · ], proving

the result.
To find the number density ρ = N/V , we simply write

ρ(T ) =

∫
d3p

(2π~)3
f(ϵp) =

4π

(2π~)3

∫ ∞

0

dp
p2

eβpc + 1
→ 1

2π2

(
kBT

~c

)3

F2

and for the energy density, by the same manouevres, we get

u(T ) =
1

2π2

(kBT )
4

(~c)3
F3

where the integrals F2, F3 were already defined.

Give a total of EIGHT (8) marks here; 2 for the explanation of why ϵp = pc, and 6 for the derivations of ρ(T )
and u(T ).

(iii) In the universe at present (at a time t ∼ 1.4 × 1010 yrs after the Big Bang), the universe is populated by
a mixture of matter and radiation (plus the enigmatic “dark matter”). The matter is a mixture of stars and black
holes, along with a lot of sub-stellar “junk” (sub-stellar brown dwarfs, planets, planetoids, dust, gas, etc.).
Most of the stars will end up as black dwarfs (ie., cold white dwarfs) after a time period extending up to ∼ 1014

yrs; how does this come about? Which stars will not end up as black dwarfs, and what will happen to them?
Low-mass black dwarfs can be treated using the usual non-relativistic Chandrasekhar argument, to show that their

radius Ro = cM−1/3, where the constant c = 2Cf/GCg is derived by minimizing the sum of the degeneracy energy

Uf = CfM
5/3/R2 and the gravitational energy Ug = −GCgM

2/R, where R is the black dwarf radius, and M is its
mass. Suppose now that the dwarf has not yet cooled (ie., it is still white), so that there is an extra small radiative
thermal contribution UT = α(T,M)R2 to the energy. Assuming that α(T,M) is “small”, find the new solution

R̃ = Ro + δR for the radius, by looking for the small correction to the original minimization equation (formally, we
assume that both δR and α are ∼ O(ϵ), where ϵ ≪ 1, and isolate terms ∼ O(ϵ) in our equations).

Stars with initial mass . 8 solar masses will live out their life on the main sequence, followed by a red giant phase
which then leads to a white dwarf. During the main sequence phase they burn up H, He, etc., up to a point where
the internal temperature can no longer lead to fusion with higher-mass nucleons. The increase in luminosity as the
heavier nucleons are burnt at higher T , along with core shrinkage required to support the higher T , leads to a blowing
out of the outer layers to the red giant, and much mass loss. The remaining core shrinks to the white dwarf, of density
∼ 106 g/cm3. This white dwarf very slowly cools. The very small fraction of stars with initial mass & 8 solar masses
will continue to synthesize ever heavier nucleons by fusion, with massive rise in core temperature and shrinkage in
core volume, until Fe is synthesized. At this point fusion is no longer possible because heavier nucleons have shrinking
mass deficit, and so the star collapses very suddenly - subsequently one has a supernova and either a neutron star or
black hole remnant.
If the white dwarf is not radiating, then we have the usual balance between electron degeneracy and gravitational

pressure, found by minimizing the energy U = Ue + UG = Ce(M
5/3/R2)−GCG(M

2/R) to give

GCG
M2

R2
− 2Ce

M5/3

R3
= 0 =⇒ R → Ro =

2Ce

GCG
M−1/3

The extra thermal contribution to the energy leads to a radiation pressure; we suppose it is small relative to Ue and
UG, as will be the correction δR to Ro. Let’s write alpha(T,M) = ϵA(T,M) and δR = ϵ∆R, where ϵ ≪ 1. Then our
new minimization equation becomes (after multiplying throughout by R3) that

GCGM
2R− 2CeM

5/3 + ϵAR4 = 0 =⇒ GCGM
2(Ro + ϵ∆R)− 2CeM

5/3 + ϵA(R4
o + 4ϵR3

o) = 0

If we now equate the terms in ϵ, and ignore the term ∼ O(ϵ2, this then leads (noting that GCGM
2Ro−2CeM

5/3 = 0)
to the result that

δR = − α

GCGM2

(
2Ce

GCG
M−1/3

)4

= −16α(T,M)
C4

e

G5C5
G

M−10/3
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Give a total of TWELVE (12) marks here; this is 4 for a correct discussion of the history leading to white
dwarves, black holes, etc., and 8 for the derivation of the result for δR.

(iv) After extremely long times almost all matter will amalgamate into black holes, apart from a photon bath which
steadily cools (after far longer times > 10100 yrs, almost all of the black holes will decay by the Hawking process into
radiation as well). Suppose at some given time the volume of the universe is VH . Using the Planck result that the
total photon energy of the universe Uph ∝ VHT 4, show that the photon bath obeys CV (T ) ∝ VHT 3, and from this,
assuming that the expansion of the universe is adiabatic, find the dependence of the entropy on VH and T .
Finally, let us assume that the expansion of the universe obeys the Hubble law, so that VH(t) ∝ t3, and using the

Planck result that the energy density of a photon gas is given in MKS units by

u(T ) =
8π5

15

(kT )4

(hc)3

find (a) the temperature of the photons after a time t = 700×109 yrs, assuming that at the present time of t = 1.4×1010

yrs, one has T = 2.7 K; and (b) find the photon energy density of the universe at the present time, in MKS units.

The photons form an isolated system after decoupling from matter, so their expansion is adiabatic. Since U(T ) ∝
VHT 4, and TdS = dU + pdV , we can write

CV (T ) = T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

∝ VHT 3 =⇒ S ∝ VHT 3 = constant

We have T ∝ (S/VH)1/3 ∝ 1/t. Thus the temperature T (t = 7× 1011) = 2.7/50 = 54 mK.
At the present time where t = 1.4× 1010 yrs, where T = 2.7 K, we have

u(T ) =
8π5

15

(kT )4

(hc)3
=⇒ u(T ) ∼ 4.01× 10−14 Jm−3

Give a total of FOUR (4) marks, viz., 2 for teh derivation of CV (T ), and 2 for the 2 correct numbers.
vspace3mm
GRAND TOTAL = 30 MARKS

QUESTION B.4: METALS and INSULATORS Solids can be classified into metals or insulators. Very
roughly speaking, we can say that (a) Metals have mobile electrons, with dispersion relation ϵp ∼ p2/2m1, a Fermi
surface, and behave similarly to an electron gas, whereas (b) electrons in an insulator with energy near the Fermi
energy are bound to atoms and not mobile, and have no Fermi surface. Only above an “energy gap” are they mobile,
and we can write an approximate dispersion relation ϵp ∼ Eo+ p2/2m2. The “masses” m1 and m2 are not necessarily
equal to the free electron mass mo. Typically the gap Eo ∼ 1− 2 eV in size.

(i) Noting we also have acoustic and possibly optical phonons, draw pictures of how you think the specific heat
CV (T ) will behave as a function of temperature T , for both metals and insulators, and explain why the different
contributions have the temperature dependence that they do.

For the metal we have T and T 3 terms at low T , with the phonon T 3 contribution flattening off above the Debye
temperature TD. For the insulator we will have the T 3 term, plus a term like e−Eo/kT .

Total is SIX (6) marks, with 2 for the T and T 3 terms, 2 for the exponential term, and 2 for the flattening off.

(ii) At low T , a degenerate fermion system shows a specific heat of form CV (T ) ∝ g(EF )T , where g(EF ) is the
1-particle density of states at the Fermi energy. From this result, deduce the low-T behaviour of (a) the energy U(T )
(b) the entropy S(T ), and (c) the free energy F (T ). Can you give a qualitative argument which justifies the result
you get for U(T )?
A useful way to measure the density of states g(E) in a metallic system is to look at the rate of photon absorption

by the metal as a function of photon frequency ω. Photons will only be absorbed if an electron can be excited from an
occupied state at one energy to an unoccupied state at another higher energy. Draw what you think you would see for
the photon absorption as a function of frequency ω in (a) a low T metal, and (b) a low T insulator, with Eo = 2 eV .
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For the form of these functions: We expect U(T ) ∼ Uo + g(EF )T
2, just by integrating CV (T ) = dU/dT . Then,

from CV (T ) = T (dS/dT ), we get S =
∫
dT (CV /T ) ∼ g(EF )T , and F (T ) ∼ g(EF )T

2, like U(T ). Qualitatively, we
have a fraction kT/EF of fermions excited to a characteristic energy ∼ kT/2.
The photon absorption should look like the density of states, ie., constant in E for metals, and like [E/(E2 −

E2
o)

1/2] θ(E − Eo) for a semiconductor (provided we ignore the energy dependence of the matrix elements).

A total of EIGHT (8) marks, with 4 for the thermodynamic quantities, and 2 for their qualitative explanation,
and 3 for the optical spectrum.

(iii) A very common approximation when dealing with acoustic phonons is to assume a phonon density of states
g(E) = 9E2/(kBTD)3 for 0 < E < θD, and g(E) = 0 for E > θD. Here TD is the “Debye temperature” and
θD = kBTD is the “Debye energy”. Typically TD is somewhere in the range 100 K − 600 K for different solids.
From this information, you should be able to derive an integral expression for lnΞ(T ) for the acoustic phonon

system (where Ξ is the grand canonical partition function), and also for the energy U(T ) [HINT: use the analogy with
photons]. Assume a system of unit volume, so that U(T ) = u(T ), the energy density; and assume that the atoms
taking part in acoustic vibrations each have mass M . You do not need to evaluate the integrals over energy. You will
use the result that the phonon chemical potential µ = 0; why is this the case?
Finally, we want to evaluate the root mean square displacement of atoms in the solid caused by acoustic phonons.

This can be shown to be given by x̄ = [⟨x2⟩]1/2, where

⟨x2⟩ =
~2

2M

∫
dE

E
g(E)[1 + 2n(E)]

in which n(E) is the Bose distribution function. Derive an integral expression for ⟨x2⟩, and then show that in the low
temperature limit T ≪ TD, we have a finite x̄ given by

x̄ ∼ 3
2~(1/MθD)1/2 (T → 0)

How do you interpret this result physically?

The phonon chemical potential µ = 0 for the same reason as for photons - because their number is not conserved.
The grand partition function Ξ is given for a system of unit volume by

lnΞ =

∫ ∞

0

dE g(E) ln(1− e−β~E) → 9

(kBTD)3

∫ ∞

0

dE E2 ln(1− e−β~E)

and the energy density is then

u(T ) =
9h

(kBTD)3

∫ ∞

0

dE
E3

eβ~E − 1

If we now go to the displacement, we have

⟨x2⟩ =
~2

2M

∫
dE

E
g(E) [1 + 2n(E)] → 9~2

M

[
1

4θD
+

1

θ3D

∫ θD

0

dE
E

eβ~E − 1

]

which for low T (for T ≪ TD) gives

⟨x2⟩ ∼ 9~2

4MθD
=⇒ x̄ ∼ 3

2~(1/MθD)1/2

which just describes the zero-point motion of the system.

A total of TEN (10) marks, with 1 for µ explanation, 1 for lnΞ, 2 for u(T ), 2 for ⟨x2⟩, 2 for the limiting value
of x̄, and 2 for the ZPE explanation.

(iv) All of the above ignores the fact that in any real solid there will be defects (which behave like 2-level systems),
electronic spin impurities, and nuclear spins. To isolate out the effect of electronic spin impurities in an insulator, we
can apply a magnetic field. Suppose these impurities have spin-1/2, and we apply a magnetic field B to the system.
What then is the partition function for a set of N such impurities, and what is their contribution to the specific heat?
Finally, draw a graph of the resulting specific heat for an insulator in the range 0 < T < 50 K, assuming that (a) the
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Debye temperature TD = 500 K, and (b) the magnetic moment of the spin impurities is µ/kB = 0.7 K/T , where T
means “Tesla”, and we are in an applied field of 20 T .

The new contribution to the partition function will be Z = ZN
1 , where Z1 = [exp(βµB) + exp(−βµB)], where here

B is the applied field and µ the spin moment. The specific heat is then

CV (T ) = NkB(βµB)2 sech2(βµB)

For a system in a field of B = 20 T , so that µB = 14 K, the impurity contribution to the specific heat peaks at
T ∼ 6 K. How this compares with the phonon specific heat depends on N ; I should have specified N for this question,
and asked them to work out the phonon specific heat as well.

A total of SIX (6) marks, with 1 for Z, 3 for the derivation of CV (T ) (and 1 if it is not derived), plus 2 for the
graph.

grand total is THIRTY (30) marks.

—————————————

END of FINAL EXAM


