CLASSICAL MECHANICS w Now-INERTIAL FRAMES
So for wive looked at classical dynamics in inertial frames, for gond reason- they we simple in such frames. However in red tee, we often wack in non-merticl firmest, because they be accelerating and/or rotating. The relationship between the this is thin o of practical importcize; and, as noted by Newton \downarrow Einstein, It is of fuidomental theoretical importance-" as well.

In who follows we clarify what we mean by non-inetral frames, end then find the form of the Lagnasion \checkmark eaton of notion in these frames. We then look it a for simple cacmoles.
(a) TRANSFORMATION TO A NON-INERTIAL FRAME : Led's begin by considers 2
frames, as shawn in the figure. We begin by looking at how things red ide to each other as viewed from the inertial frame O. We inigme look eng at
 2 points in space, at $\underline{B}_{0}(t)$ and $\underline{R}(t)$. The point at $R_{0}(t)$ is the position from where the non-ineticl frame is defined - we coo income it fired in sone solid body, perhaps d its centre of mass, at O^{\prime}.

The second point at \mathcal{P} ca be thought of so d finer the position of sone particle. Its position reldwe to 0 is $\underline{R}(t)$, and reldive to \mathcal{O}^{\prime} it is at $\underline{r}(t)$.

Now a key point here is that not only is $0^{\prime \prime}$ mono with respect to O (ct a velocity $\left.\dot{R}_{0}(t)\right)$, bat it also has a set of axes defining directions in O^{\prime}, defined by a set of orthonermed vectors e_{1}, e_{2}, e_{3}; and
 2 which define the inertial frame directions. The most general motion of the set $\left\{\hat{e}_{j}\right\}$ with respect to the metal set $\hat{x}_{j} \geq\{\hat{\underline{x}}, \hat{y}, \underline{z}\}$ is s rotation; and it is easy to see that if the rotdion has agio velocity a (ie; <bout on axis $\hat{\underline{a}}$, when rate w), then

$$
\begin{equation*}
\dot{e}_{j}=\frac{d}{d t} \ddot{e}_{j}=\underline{\omega} \times \hat{e}_{j} \quad(\text { in } 0) \tag{1}
\end{equation*}
$$

Now we wat to see how to define coordinates, velocities, and vectors in the non-inestial frame. Obviously in the inertial fine we have

$$
\left.\begin{array}{l}
\underline{R}(t)=\underline{R}_{0}(t)+\underline{\Gamma}(t) \tag{2}\\
\underline{R}(t)=\underline{R}_{0}(t)+\dot{\mathscr{R}}(t)
\end{array}\right\}
$$

and the properties of any other vector $\underline{A}(t)$ defined in this frame are simple enough．

Consider now how things look to an observer in the frame 0^{\prime} ，with its axes $\left\{\hat{e}_{j}(t)\right\}$ defined as above．It is important to see that the vectors
 definer the points P, O^{\prime} ，and O wee sow different．Thins O^{\prime} is now the origin， and there is a new tine－dependace in these vectors coming from the rotation of the axes $\left\{\hat{e}_{j}(t)\right\}$ ．To see this in en extreme farm，suppose that the vectors $\underline{R}, \underline{R}_{0}$ ，and I in the inertial frame ce all fixed and independent of tore．Neverthess，if the frame ittcened to O^{\prime} is rotation in the inertial frise， the comespondins vectors $Q(t), Q_{0}$ ，and $q(t)$ in the son－inetial frame will be time－ dependent．

To see how this affects some vecks Written ss some gives time we look at the thane dervituve of a vector $\underline{A}(t)$ ，

$$
\underline{A}(t)=\left\{\begin{array}{cc}
\sum_{j} a_{j}(t) \hat{x}_{j}+\underline{A}_{0} & (\ln 0) \tag{3}\\
\sum_{j} a_{j}(t) \underline{g}_{j}(t)+\underline{A}_{0^{\prime}} & \left(\ln O^{\prime}\right)
\end{array}\right\}
$$

where to simplify una follows，we hare lined ap the axes $\hat{e}_{j}(x)$ and \hat{x}_{j} to be parallel at time t（if we relax this restriction，we simply cumplecte the asebre， but don＇t charge the answer）；Bo and \underline{A}_{0}＇ae two vector hide make no difference to the result the follows below 米

Now consider the time differeatint of $\underline{A}(t)$ ；we have

$$
\begin{align*}
\underline{\dot{A}}(t) & =\sum_{j} \dot{a}_{j}(t) \hat{x}_{j}=\dot{a}_{\dot{\circ}}(t) \tag{4}\\
& \equiv \operatorname{m}_{j}\left[\dot{a}_{j}(t) \underline{e}_{j}(t)+a_{j}(t) \dot{e}_{j}(t)\right] \tag{s}\\
& \equiv \underline{\underline{a}}(t)+(\underline{\omega} \times \underline{A}(t))
\end{align*}
$$

so the in the rotating frame，we have an extra contribution to the derisive coming
＊These vectors A_{0} and A_{0} ，simply correspond to a shit t of origin in the 2 systems，and we will ignore them from now co_{3} ．One can iscrule（h）ord （s）in valor wis：eg．，$\dot{A}(t)=\partial A / \partial t+(\omega \times A)$ ．
from the solution af the frore ot referee catered at 0^{\prime}. Notice, incidentally, that one vector that is the sure in the 2 froveco of reference is $\underline{\underline{\omega}}$; this is become $\underline{\omega} \times \underline{\omega}=0$.

We now apply this result to find the egtn. of motion of a portide T in the non-inetid frame.
(b) LAGRANGIAN \& EQTIS of MOTION IN NON'-INERTIAL FRAME

To derive the farms for \mathcal{L}, the Lgreagin, and the eqtop at motion in the non-meticl frame, we vil use the transformation deemed above. To do so we consider the simple Lagragia

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m \underline{R}^{2}-V(\underline{R}) \tag{6}
\end{equation*}
$$

for the particle att P. In what. fallows we look foot at how the Langue, trionfoms made the transformation to 0^{\prime} from 0 , ad the how the eyas. at motion transoon.

TRANSFORMED LAGRANGIAN: Sorpoos we consider frost, for simpliety's soke, the cai where $\boldsymbol{\omega}=0,1 e$. , the fine it O^{\prime} is not rotation. Then we have the simple substitution in '(2), ie.,

$$
\left.\begin{array}{rl}
\mathcal{L}^{\prime} & =\frac{1}{2} m\left(\underline{R}_{0}+\dot{r}\right)^{2}-V\left(\underline{R}_{0}+r\right) \\
& =\frac{1}{2} m\left(\underline{R}_{0}^{2}+\dot{r}^{2}\right)+m \dot{R}_{0} \dot{r}-V\left(\underline{R}_{0}+r\right)
\end{array}\right\}
$$

Now we can ged rid of 2 at the terms here by notion that the equations ot motion and the Lagrangian are unaffected (or only affected triviclly) by adding any term to the Lageinsia which is a total time derivative ${ }^{*}$. There ane setnully two ${ }^{2} 2^{\text {total }}$ time derivatives concealed in (7); we nate that the sate quantity $i_{2 m} R_{0}^{2}$ is clearly the tome dersictive of its integral, wide is a function only of R_{0} and t; and the function $m \underline{R} \circ \circ$ cu be written os

ihere"T.T.D." mean "total time dervacture, and we "hive written V(r) in place of $V(\underline{R}+r)$ became aw new oisin is at O ". The "force" Finest is an "inertial

* Suppose we add $<\operatorname{term} f(\varphi, t)=\frac{d}{d t} F(\varphi, t)$ to $\mathcal{L}(\varphi, \dot{\varphi}, t)$. Then the new action is $S=\int_{t_{1}}^{t_{2}} d t[\mathcal{L}+d F / d t]=S_{0}+\left(F\left(t_{2}, \phi\right)-F(t, p)\right)$ which Jut adds a rastiont to S_{0}; this cannot affect the egtuo at motion.
fore" ; we have

$$
\underline{F}_{\text {inert }}=m \ddot{R}_{0}
$$

and it cones from the accelection of O^{\prime}. Thus in the frame 0^{\prime}, provided it is not, rotating, we will feel an extra farce Finest common from the prideclecalion af 0^{\prime}. This efta. express very succuctly, in the fiemevaite of Newtinion mechanics, tire "equivalence principle"; viz., that we cannot, in sone neferace fire, distinguish between the effect ot sone external force, and the effect of an acceleration of the reference frame. When genecized to relativistic dynamics, this result becomes the "Einstein eqnivelace proxiple."

Now suppose we claw rotations in the frore of references centred at O^{\prime}. Then, according to (5), we get instead of (y) the transformed Lagrasion

$$
\begin{equation*}
\mathcal{L}^{\prime}=\frac{1}{2} m(\dot{r}+(\underline{\omega} \times r))^{2}-\underline{F}_{\text {went }} \cdot \underline{r}-V(\underline{r}) \tag{11}
\end{equation*}
$$

where steady dealt wits the total tine dervictiven in tine same way is above; multiplying this out we get
with the amen sometimes given to these different terms.

TRANSFORMED EUTN/S of MOTION: We ron it we like dense the option of motion directly from (12)
using Lagmye's egtas. But it is joist as essay, if not easier, to guns derwe then by transforming Newton's and law from O to 0 ,', again by substitution into

$$
\begin{equation*}
M \ddot{\mathscr{R}}+\partial V / \partial \underline{R}=0 \tag{13}
\end{equation*}
$$

Going over to the O^{\prime} frame, and notion that $\ddot{R}=\ddot{P}_{0}+\frac{d^{2}}{d t^{2}} \underline{(t)}$, we
have

$$
\begin{equation*}
M\left(\ddot{R}_{0}+\frac{d^{2}}{d t^{2}} r(t)\right)+\partial V / \partial r=0 \tag{is}
\end{equation*}
$$

Now lek as wank out the And term. We have, in the rotator frame,

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} r(t)=\frac{d}{d t}\left(\frac{d r}{d t}\right) & =\frac{d}{d t}(\dot{r}+(\underline{\omega} \times r)) \\
& =\left(\frac{d \dot{r}}{d t}\right)+\frac{d}{d t}(\underline{\omega} \times \underline{r}) \tag{15}\\
& =(\ddot{r}+(\omega \times \dot{r}))+\left[\left(\frac{d \omega}{d t} \times \underline{r}\right)+\left(\omega \times \frac{d}{d t} \underline{r}\right)\right]
\end{align*}
$$

and then, noting thab $d \underline{\omega} / d t=$ is became $\underline{\omega} \times \underline{w}=0$ (ct. the removis juot atter eptn (s)), we tinclly get, in the rationn \bar{e}^{\prime} freme, that

$$
\left.\begin{array}{rl}
\frac{d^{2}}{d t^{2}} r(t) & =\stackrel{\ddot{r}}{\underline{0}}+\underline{w} \times \underline{r}+\underline{\dot{\omega}} \times \underline{r}+\underline{w} \times[\underline{\dot{r}}+(\underline{w} \times \underline{r})] \tag{16}\\
& =\underline{r}+2(\underline{w} \times \underline{\underline{r}})+\underline{\tilde{w}} \times \underline{r}+\underline{w} \times(\underline{\underline{r}})
\end{array}\right\}
$$

so that the e9tn of mation in (13) becomes, from (14) and (15),
with < totel force $F_{\text {Tot }}$:

$$
\begin{equation*}
F_{\text {Tot }}=F_{\text {mest }}-\partial V / \partial I \tag{18}
\end{equation*}
$$

with Finest given by (1i) sbave. The centritugsl $*$ Corrolis facces ve diserwsed below; the "wable" force cames from the faet that W itself may voy in time (eg., in s spicecrat, W, ss generlly deperdent on \bar{t}, becine it sll the diferent thinsto berm yplied to it). We will not lank as tirs wollle term hore.
(b) CENTRIFUGAL x CORIO4s FORCES : Let's briefly look is haw ecoily do so by considering eximples - the simpleat is to loak at arik. We can most athangh dearly in any reel situction they worle together.

CENTRIFUGAL FORCE: This is by fer the nost inturituely femilic to ordincy experence, manly becomse it ats even wen the velocity $\dot{I}=0$. We can wirter it as

$$
\begin{align*}
F_{\text {centrif }} & =-m \underline{\omega} \times(\underline{\omega} \times r) \tag{19}\\
& =-m\left[\underline{\omega}\left(\underline{\omega_{0}} \underline{r}\right)-\omega^{2} \underline{r}\right]
\end{align*}
$$

usin the standard vecter identry for the vector praduct $\underline{a}_{1} \times(\underline{6} \times \underline{c})$; in cylindinal coordinctes with $\underline{\omega}=\hat{\underline{\imath}} W$, this juat becomes

$$
\begin{align*}
F_{\text {centrit }} & =-m\left[\left(\omega r_{2}\right) \hat{z} \omega-\omega^{2}\left[\hat{z} r_{2}+r_{1}\right]\right] \\
& =m \omega^{2} r_{1} \tag{20}
\end{align*}
$$

Where $\underline{r}_{1}=\left(\underline{\hat{x}} r_{x}+\hat{y} r_{y}\right)$ is the radius vector perpendicular to the \hat{z} axis, le, this component of r in the $x y$-plane.

It 15 interesting to see how this force affects ow notion of "up" and "down" on the stanface of the earth. The simplest way to see this is to imagine a spherical earth rotation at cuguls velocity w, and see how the force action on a sitioncsy object deviates from the direction towesos the centre of the earth.

The situation is that shown in the figure. We imagine a point on the earth at pole coyle θ sway * from the natch pole, cud so the faces on it cone from 2 sores:
(1) There 15 a force mg , acting on a mas m, from - the earth's gravity - this is directed toward the centre st the cuts.
(ii) There is a centrifugal force directed perpendicule to \underline{W}, of magnitucle

$$
\begin{equation*}
F_{\text {cedrif }}=m(\underline{\omega} \times \underline{r}) \times \underline{w} \tag{2.}
\end{equation*}
$$

Thus the combined field actors on the mass m cen be witter as

$$
\begin{equation*}
\underline{g}^{*}=\underline{g}+(w \times \underline{r}) \times \underline{w} \quad=\hat{\underline{z}} g_{+}^{z}+\hat{\hat{x}} g_{*} \tag{22}
\end{equation*}
$$

Where in this cire $\underline{r}=\hat{\underline{z}}_{\underline{x}}+\hat{\underline{x}}_{\boldsymbol{r}}$, and we have chosen the $\hat{\underline{x}}, \underline{y}, \hat{\underline{z}}$ axes so the the y-rus points into the page; the components of \underline{g}_{*} we
then

$$
\left.\begin{array}{l}
g_{*}^{z}--g \cos \theta \tag{23}\\
g_{*}^{x}=-g \sin \theta+\omega^{2} r_{x} \equiv\left(-g+R_{0} \omega^{2}\right) \sin \theta
\end{array}\right\}
$$

where R_{0} is the radius of the earth. We can clio with the answer using
 the axes shown below left; here $\underline{e}^{\prime \prime}$ is a ant vector directed out from the centre of the earth, so $\hat{e}_{11}=\underline{r}$, and \hat{e}_{1} is purled to the earth's surface, le, horizontal as the leet position on the earth's surface. We then wite the vector g_{*} in this new coardincle system (antics is the one that

* In other words, the 1atitide is $\pi-\theta$.
we ourselves see) as

$$
\begin{equation*}
g_{*}=g_{*}^{11} \hat{e}^{\prime \prime}+g_{*}^{\perp} \underline{e}^{\perp} \tag{24}
\end{equation*}
$$

and we find that

$$
\left.\begin{array}{l}
g_{*}^{\prime \prime}=-g\left(1-\omega^{2} R_{0} \sin ^{2} \theta\right) \tag{25}\\
g_{*}^{\perp}=\omega^{2} R_{0} \sin \theta \cos \theta
\end{array}\right\}
$$

Thus, is a result ot the centifunivi force, we expect to see the weight of the , mun m decresc; we will measure on APPARENT MASS

$$
\begin{equation*}
m^{+}=m\left(1-\omega^{2} R_{\theta} \sin ^{2} \theta\right) \tag{26}
\end{equation*}
$$

and we duo see a slight sideways force $m g_{+}^{\perp} \hat{e}_{1}$. We contd meanie the ratio of these 2 fares by hang os s weight; the angle ψ it then devices from the vertical would be given by

$$
\left.\tan \psi=\left|\frac{g_{*}^{1}}{g_{*}^{\prime \prime}}\right|=\frac{\omega^{2} R_{\odot} \sin \theta \cos \theta}{g\left(1-\omega^{2} R_{\odot} \sin ^{2} \theta\right)} \right\rvert\,
$$

$$
\xrightarrow[\psi \ll 1]{ } \quad \frac{\omega^{2} R_{\theta}}{g} \sin \theta \cos \theta
$$

Now, even though R_{0} is quite big for the earth, ω is also very small; we actinly find then for the earth, $\omega^{2} R_{0} \sim 3.4 \mathrm{~cm} / \mathrm{sec}^{2}$, whens $g \sim 9.81 \mathrm{~m} / \mathrm{sec}^{2}$, so that the angle if is

$$
\left.\begin{array}{c}
\psi \sim 3.4 \times 10^{-3} \sin \theta \cos \theta \tag{28}\\
\sim 12^{\prime} \sin \theta \cos \theta
\end{array}\right\}
$$

for the eats, where $R_{\odot} \sim 6.37 \times 10^{3} \mathrm{~km}$, and $\omega=7.292 \times 10^{-5} \mathrm{~s}^{-1}$ Thus the deviation frame the vertical for the earth is robber sucll, with a mesumum when $\theta=45^{\circ}$, when $\psi \sim 6^{\prime}$ of and.*

We notice thad for a none rapidly spinning body the effect of centintugal force gets muck bigger. However this centofingal force uso conses \& lax body. Rice a planet or ster, to flatten, and if it. is strong enough, the system will fly sport.

* In realty the evil is not a sphere; the deformation crectill by rotation Conses a a flattery of roughly 1/300 from spherical, and this eltact is compereible to the centrifugal contribution (and in the same direction).

CORIOLIS FORCE: Suppose that instead of hanging as object from sone point (Which, es we jot saw, thaws ns in principle to mexsme the centintugal force canoed by earth's rotation) we actually drop the object.

At this point the Coriolis force comes into play. We see from ign (17). that fester it falls, the stingo is this farce, and it is perpendicular to bath if and w.

INERTIAL FRAME

IN frame of $\hat{\kappa}$ rotating sse

Above we show hov this cion wade in practise. In (a), we shaw things in the inertial franz, with a non-rotctiry disc being traversed by an object fallowing the pase P (if you want, yon con think at a fly passing over $<$ rating record, or $<$ stellite an $<$ circumpolar flight passing over the earth.).

The second figure (b) shows the situation when the disc is rotating slowly ANTI - clockwise, ${ }^{\circ}$ viewed from clave (this corresponds to the earth's ratcian, viewed from cove the saith pole.). We shan time why in which pinto an the moving disc shandy move under the path at the moving olopeet to coinade with it is it passes. Thus, italy, points that were previously to "the left" at the straight lane petit must move into it in sander to coincide with the moving object i as it passes.

Find, in (c), we show the set of points on the rotation object that end up coinciding with the abject ty overhead. If this was the rotating esth, these we the paints where observers would see the satellite flying overhead.

The situation is even more ilcomatic if the rotation diseleatis is rotation faster: the path is viewed in tie rotation fraise curls up inane more.

PATH FOLLOWED IN INERTIAL FRAME

coinciding points ON ROTATNG OBJET

PAH FOLLOWED IN Frame of rotating eject

With these prelimency remakes in mind (which help no to see the direction of the force using powell phyles sogumeits), let's now analyse in example. We have a Coriolis, force given by

$$
\begin{equation*}
F_{\text {cor }}=-2 m(\underline{\omega} \times \underline{\underline{I}}) \tag{29}
\end{equation*}
$$

and nov we want to ccissider whit happen if we drop an object from some height on a rotating body like the earth. The geometry is shown in tire figure a left. We ie it a point on the
 earth at " polar able θ (Re, e latitude $\pi-\theta$). The local axes cure in shown; tire $\hat{\underline{y}}$ axis is pointing ont of the paper.

We now drop an object from < height 20 above the ground - in whit follows we will ignore centrifugal fares, so the total force an the abject leads to an efta of nation

$$
\begin{equation*}
\underline{m} \ddot{=}=\underline{g} m-2 m(\underline{\omega} \times \dot{\underline{r}}) \tag{30}
\end{equation*}
$$

Now to solve the trajectory for wbitscy height and values at w and. z_{0} is ectadly quite messy, so we are going to assume the dwins the fall, the Coriolis force is a SmALL PERTURBATION on the gravitation el force. To do this we rewirter (30) in the form

$$
\begin{equation*}
\ddot{r}=g-m \in(\underline{\underline{q}} \times \dot{r}) \quad(t \ll 1) \tag{31}
\end{equation*}
$$

where $\underline{\Omega}$ is not sasumed smell, $\underline{\omega}=\epsilon \underline{\Omega}$, and we wite $\underline{\Gamma}(t)$ ss

$$
\begin{equation*}
\Gamma_{(t)}=\Gamma_{0}(t)+\epsilon \Gamma_{1}(t)+\epsilon^{2} r_{2}(t)+\cdots \tag{32}
\end{equation*}
$$

where $\Gamma_{0}(t)$ is the "unpetimbed solution", with $\epsilon=0$, le., it obeys

$$
\begin{equation*}
\ddot{ت}_{0}(t)=g \tag{33}
\end{equation*}
$$

and the correction to $I_{0}(t)$ in (32) cane from the Coriolis perturbation. Now, we will obtain a solution os a expansion in parers of ϵ. To do this wee substrate the "ansate" in (32) into the equation of motion, to orb

$$
\begin{equation*}
\left(\stackrel{\ddot{r}}{\underline{-}_{0}}+\epsilon_{-1}^{\ddot{I}_{1}}+\epsilon_{-2}^{2} \ddot{\ddot{-}_{2}}+\cdots\right)=\underline{g}-2 \underline{\Omega} \times\left(\underline{\epsilon}_{2}+\epsilon^{2} \dot{r}_{1}+\cdots\right) \tag{34}
\end{equation*}
$$

and then, since ϵ is a sabitsery number which we con vary (always assuming that $\in \ll 1$), we con equate powers of E. This then gives no the estes.

$$
\left.\begin{array}{ll}
\epsilon^{0}: & \ddot{r}_{0}=\underline{g} \\
\epsilon^{\prime}: & \ddot{r}_{1}=-2(\Omega \times \stackrel{\ddot{r}}{0}) \tag{35}\\
\epsilon^{2}: & \ddot{r}_{2}=-2\left(\underline{\Omega} \times \ddot{r}_{1}\right)
\end{array}\right]
$$

and so on. To find the solution we ans integricie there eptos up; native that the solution for $r_{j}(t)$, the term of order E^{j}, depends on the solution for $r_{j-1}(t)$, and so on - we have a coupled set of equations.

Solving the lovest-arder efta for \ddot{r}_{0}, with mortal conditions $\Gamma_{0}(t=0)=\underline{z} z_{0}, \dot{r}_{0}(t=0)=0$, \checkmark writing $\underline{g}=-g \underline{\underline{z}}$, we find

$$
\left.\begin{array}{l}
\dot{r}_{0}(t)=\hat{\underline{z}}\left(z_{0}-\frac{1}{2} g t^{2}\right) \tag{36}\\
\dot{r}_{0}(t)=-\hat{z} g t
\end{array}\right\}
$$

Note there is no seed for mo to write ont the vector companebta hereif we joint keep everythy in veitio notation we have

$$
\begin{align*}
& \dot{r}_{0}(t)=g t \tag{37}\\
& r_{0}(t)=r_{0}(t=0)+1 / 2 g t^{2}
\end{align*}
$$

We now go to the est of order ϵ ier (35), whet reads

$$
\begin{equation*}
\ddot{r}_{-1}=-2\left(\Omega \times \dot{r}_{3}\right)=-2(\underline{\Omega} \times \underline{g}) t \tag{38}
\end{equation*}
$$

wace gives

$$
\left.\begin{array}{l}
\dot{r}_{1}(t)=\dot{r}_{1}(0)-(\underline{\Omega} \times \underline{g}) t^{2}=-(\Omega \times g) t^{2} \tag{39}\\
r_{1}(t)=r_{1}(0)-\underline{3}(\underline{\Omega} \times \underline{g}) t^{3}=-\frac{1}{3}(\underline{\Omega} \times \underline{g}) t^{3}
\end{array}\right\}
$$

 Now prating this all togetion, we get

$$
\underline{r}(t)=\underline{r}_{0}(t)+\epsilon \underline{I}_{1}(t)=\underline{r}_{0}(0)+1 / 2 \underline{g} t^{2}-\frac{1}{3}(\underline{\omega} \times \underline{g}) t^{3}
$$

for the solution up to order \in (here we have resubstituted $\underline{\omega}=\in \Omega$). If ie wite this out in components, notion that

$$
\begin{equation*}
\underline{\omega}=w[\underline{\hat{z}} \cos \theta+\underline{\hat{x}} \sin \theta] \tag{40}
\end{equation*}
$$

wive then find tint $\underline{r}(t)=\hat{\underline{z}}\left(z_{0}-\frac{1}{2} g t^{2}\right)-\hat{y} \frac{\operatorname{cog} t^{3}}{3} \sin \theta$

Now the deflection here is pretty small if we choose ippropicte $v=1$ ines for the city. From (4) we see that the the for the systems to fall from , height z_{0} is given from (Bc) by

$$
\begin{equation*}
t_{0}=\left(2 z_{0} / g\right)^{1 / 2} \tag{42}
\end{equation*}
$$

and we then get a deflection

$$
\begin{equation*}
y_{0}=y\left(t=t_{0}\right)=\frac{1}{3} \operatorname{\omega g}\left(\frac{2 z_{0}}{g}\right)^{3 / 2} \sin \theta \tag{43}
\end{equation*}
$$

If we put the numbers in for the earth, viz.

$$
\begin{aligned}
& w=7.292 \times 10^{-5} \mathrm{mads} / \mathrm{sec} \\
& g=9.81 \mathrm{~ms}^{-2}
\end{aligned}
$$

and io to $\theta=45^{\circ}$ (ice, 1othate oft 45°), and then drop an object from a height of 100 m , we find $y o \sim 1.5 \mathrm{~cm}$. This only mincreses like the $3 / 2$ power of z_{0}; for < height of 1 km the deflection is 61 cm , ad for < height of 10 km (an <plane slitade), we get a deflection w 15.5 m .

One can, it the perturbation is larger. continue the expansion in E t. higher order in ϵ; to snot yarsett, you could try solving up to $\sim O\left(\epsilon^{2}\right)$, using the Bid efta in (35).

