
Phys 306 Homework 5 solutions. March 14, 2017

Marking scheme in red.

1 Question 1:

part a)
(i)

The (gravitational) potential energy is V (z) = mgz so that as usual the Lagrangian for the mass at position r(t) is

L =
1

2
m0ṙ

2 −mgz. (1.1)

With the constraint that the mass lies on the rotating hoop described in the question.

(ii)

Define two unit vectors êx′ , êy′ that rotate with the plane (the rotation is around the z axis so that z unit vector is same
in the rotating frame as in the non rotating frame). In terms of the static unit vectors êx, êy they are ,

êx′(t) = cos(ω0t)êx + sin(ω0t)êy (1.2)
êy′(t) =− sin(ω0t)êx + cos(ω0t)êy. (1.3)

Note d
dt êx′ = ω0êy′ . Inside the rotating plane we can set up the coordinate θ to describe the position of the mass as

shown below.

The position vector is then of the form,

r(t) = R0 [sin θêx′ − cos θêz] (1.4)

so that the velocity of the mass is

ṙ = R0

[
θ̇ (cos θêx′ + sin θêz) + sin θ

d

dt
êx′

]
(1.5)

= R0

[
θ̇ (cos θêx′ + sin θêz) + ω0 sin θêy′

]
. (1.6)

Therefore the kinetic energy is,

T =
1

2
m0R

2
0

(
θ̇2 + ω2 sin2 θ

)
. (1.7)

So that the Lagrangian in the rotating frame is (I have dropped a constant term which does not depend on θ)

L′ = 1

2
m0R

2
0

(
θ̇2 + ω2 sin2 θ

)
+m0gR0 cos θ. (1.8)

Note there is no Coriolis term above as the Coriolis force is perpendicular to the plane of motion.
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part b)
(i)

The equation of motion is

0 =
d

dt

∂L′

∂θ̇
− ∂L′

∂θ
= m0R

2
0θ̈ +m0R

2
0ω

2
0 sin θ

(
g

ω2
0R0

− cos θ

)
. (1.9)

We have a stationary solution when

θ̈ = 0 ⇒ sin θ

(
g

ω2
0R0

− cos θ

)
= 0 (1.10)

so there are the following stationary solutions

sin θ = 0 ⇒ θ =0 or π (1.11)

cos θ =
g

ω2
0R0

⇒ θ =± θE ≡ ± arccos−1
(

g

ω2
0R0

)
so long as g ≤ ω2

0R
2
0. (1.12)

Now we need to work out which of these stationary solutions support stable oscillations about them. To do this it is
convenient to think in terms of an “effective potential” Ṽ (θ) defined by,

Ṽ (θ) = −m0R
2
0ω

2
0

(
g

ω2
0R0

cos θ +
1

2
sin2 θ

)
. (1.13)

The equation of motion in terms of Ṽ is

m0R
2
0θ̈ = −

dṼ

dθ
. (1.14)

The stationary solutions (1.11-1.12) occur at points where dṼ
dθ = 0 we need to figure out whether these points are

minima or maximas of the effective potential. We know when ω0 = 0 the mass will sit at the bottom of the hoop so
θ = 0 is the minimum for small ω0. When ω0 >

√
g/R2

0 a new there are two new minima which are either side of the
center of the hoop at angles ±θE where the centrifugal force is balanced by gravity. When ω0 >

√
g/R2

0 the position
at the bottom of the hoop (θ = 0) has a minima on either side of it so in this case θ = 0 is a maxima. In all cases the
point at the top of the hoop θ = π is a maxima of the effective potential. The above can be confirmed mathematically
using the second derivative of the effective potential,

d2Ṽ

dθ2
= m0R

2
0ω

2
0

(
sin2 θ − cos2 θ +

g

ω2
0R0

cos θ

)
. (1.15)

• When θ = 0 we have
d2Ṽ

dθ2

∣∣∣∣∣
θ=0

= m0R
2
0ω

2
0

(
−1 + g

ω2
0R0

)
. (1.16)

There are two cases: (I) when g < ω0R
2
0 we have d2Ṽ

dθ2

∣∣∣
θ=0

> 0 so θ = 0 is a local minimum of Ṽ and (II) when

g > ω0R
2
0 we have d2Ṽ

dθ2

∣∣∣
θ=0

< 0 so θ = 0 is a local maximum.

• When cos θ = g
ω2

0R0
we have sin θ =

√
1−

(
g

ω2
0R0

)2
so that

d2Ṽ

dθ2

∣∣∣∣∣
θ=±θE

= m0R
2
0ω

2
0

(
1− g2

ω4
0R

2
0

)
(1.17)

so d2Ṽ
dθ2

∣∣∣
θ=±θE

> 0 when g < ω0R
2
0 and we have a minimum of Ṽ otherwise we have a local maximum.

The above analysis implies that the stationary point with lowest effective potential is,

θ = θs =

{
θ = 0 for g > ω2

0R0

± arccos
(

g
ω2

0R0

)
for g < ω2

0R0
. (1.18)
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(ii)

Write θ = θs + φ where θs is the stationary solution (1.18) then the equation of motion is

m0R
2
0φ̈ = − d2Ṽ

dθ2

∣∣∣∣∣
θ=θs

φ+ . . . (1.19)

and so for small oscillations (φ small) we have .

m0R
2
0φ̈ ≈ −

d2Ṽ

dθ2

∣∣∣∣∣
θ=θs

φ (1.20)

so putting φ(t) = aeiωt we find

ω =

√√√√ 1

m0R2
0

d2Ṽ

dθ2

∣∣∣∣∣
θ=θs

(1.21)

substituting in equations (1.16) and (1.17) we have

ω =

±ω0

√
g

ω2
0R0
− 1 for g > ω2

0R0

±ω0

√
1− g2

ω4
0R

2
0

for g < ω2
0R0.

(1.22)

Question 1 is worth 7 marks: 1 mark for getting a Lagrangian equivalent to that in equation (1.8) (the angle θ can
be defined a number of different ways all were accepted as long as they rotated with the plane), 1 mark for an equation
of motion equivalent to (1.9), 2 marks for identifying θ = 0 and θ = ±θE as in equations (1.11-1.12) or equivalent,
1 mark for identifying that stable equilibrium changes depending on whether or not g > ω2

0R) and 2 marks for the
correct frequencies given in equation (1.22).

2 Question 2:

part a)
The position vector of the mass is

r(t) = r(t) [cos(ω0t)êx + sin(ω0t)êy] ≡ r(t)êr (2.1)

therefore

ṙ = ṙêr + rω0êθ (2.2)
with êθ = − sin(ω0t)êx + cos(ω0t)êy. (2.3)

So the Lagrangian in the rotating frame is

L′ = 1

2
m(ṙ2 + ω2

0r
2) (2.4)

and the equation of motion is

r̈ = ω2
0r (2.5)

part b)
The solution of the equation of motion is

r(t) = A+e
ω0t +A−e

−ω0t. (2.6)

So the initial condition ṙ(0) = 0 is equivalent to

ω0(A+ −A−) = 0 ⇒ A− = A+ (2.7)
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thus r(t) is

r(t) =
A+

2
coshω0t. (2.8)

Written in terms of the initial radius we have

r(t) = r(0) coshω0t. (2.9)

Question 2 is worth 3 marks: 1 mark for determining the equation of motion (2.5), 1 mark for correctly identifying
the general solution (2.6) and 1 mark for imposing the initial conditions to get a relationship like equation (2.7) relating
the undetermined parameters.
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