Marking scheme in red.

1 Question 1:

part a)

(i)

The (gravitational) potential energy is $V(z)=m g z$ so that as usual the Lagrangian for the mass at position $\mathbf{r}(t)$ is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m_{0} \dot{\mathbf{r}}^{2}-m g z \tag{1.1}
\end{equation*}
$$

With the constraint that the mass lies on the rotating hoop described in the question.

(ii)

Define two unit vectors $\hat{\mathbf{e}}_{x^{\prime}}, \hat{\mathbf{e}}_{y^{\prime}}$ that rotate with the plane (the rotation is around the z axis so that z unit vector is same in the rotating frame as in the non rotating frame). In terms of the static unit vectors $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}$ they are,

$$
\begin{align*}
& \hat{\mathbf{e}}_{x^{\prime}}(t)=\cos \left(\omega_{0} t\right) \hat{\mathbf{e}}_{x}+\sin \left(\omega_{0} t\right) \hat{\mathbf{e}}_{y} \tag{1.2}\\
& \hat{\mathbf{e}}_{y^{\prime}}(t)=-\sin \left(\omega_{0} t\right) \hat{\mathbf{e}}_{x}+\cos \left(\omega_{0} t\right) \hat{\mathbf{e}}_{y} \tag{1.3}
\end{align*}
$$

Note $\frac{\mathrm{d}}{\mathrm{d} t} \hat{\mathbf{e}}_{x^{\prime}}=\omega_{0} \hat{\mathbf{e}}_{y^{\prime}}$. Inside the rotating plane we can set up the coordinate θ to describe the position of the mass as shown below.

The position vector is then of the form,

$$
\begin{equation*}
\mathbf{r}(t)=R_{0}\left[\sin \theta \hat{\mathbf{e}}_{x^{\prime}}-\cos \theta \hat{\mathbf{e}}_{z}\right] \tag{1.4}
\end{equation*}
$$

so that the velocity of the mass is

$$
\begin{align*}
\dot{\mathbf{r}} & =R_{0}\left[\dot{\theta}\left(\cos \theta \hat{\mathbf{e}}_{x^{\prime}}+\sin \theta \hat{\mathbf{e}}_{z}\right)+\sin \theta \frac{\mathrm{d}}{\mathrm{~d} t} \hat{\mathbf{e}}_{x^{\prime}}\right] \tag{1.5}\\
& =R_{0}\left[\dot{\theta}\left(\cos \theta \hat{\mathbf{e}}_{x^{\prime}}+\sin \theta \hat{\mathbf{e}}_{z}\right)+\omega_{0} \sin \theta \hat{\mathbf{e}}_{y^{\prime}}\right] \tag{1.6}
\end{align*}
$$

Therefore the kinetic energy is,

$$
\begin{equation*}
T=\frac{1}{2} m_{0} R_{0}^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right) \tag{1.7}
\end{equation*}
$$

So that the Lagrangian in the rotating frame is (I have dropped a constant term which does not depend on θ)

$$
\begin{equation*}
\mathcal{L}^{\prime}=\frac{1}{2} m_{0} R_{0}^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right)+m_{0} g R_{0} \cos \theta \tag{1.8}
\end{equation*}
$$

Note there is no Coriolis term above as the Coriolis force is perpendicular to the plane of motion.

part b)

(i)

The equation of motion is

$$
\begin{equation*}
0=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}^{\prime}}{\partial \dot{\theta}}-\frac{\partial \mathcal{L}^{\prime}}{\partial \theta}=m_{0} R_{0}^{2} \ddot{\theta}+m_{0} R_{0}^{2} \omega_{0}^{2} \sin \theta\left(\frac{g}{\omega_{0}^{2} R_{0}}-\cos \theta\right) \tag{1.9}
\end{equation*}
$$

We have a stationary solution when

$$
\begin{equation*}
\ddot{\theta}=0 \quad \Rightarrow \quad \sin \theta\left(\frac{g}{\omega_{0}^{2} R_{0}}-\cos \theta\right)=0 \tag{1.10}
\end{equation*}
$$

so there are the following stationary solutions

$$
\begin{align*}
\sin \theta=0 & \Rightarrow \theta=0 \text { or } \pi \tag{1.11}\\
\cos \theta=\frac{g}{\omega_{0}^{2} R_{0}} & \Rightarrow \quad \theta= \pm \theta_{E} \equiv \pm \arccos ^{-1}\left(\frac{g}{\omega_{0}^{2} R_{0}}\right) \text { so long as } g \leq \omega_{0}^{2} R_{0}^{2} \tag{1.12}
\end{align*}
$$

Now we need to work out which of these stationary solutions support stable oscillations about them. To do this it is convenient to think in terms of an "effective potential" $\tilde{V}(\theta)$ defined by,

$$
\begin{equation*}
\tilde{V}(\theta)=-m_{0} R_{0}^{2} \omega_{0}^{2}\left(\frac{g}{\omega_{0}^{2} R_{0}} \cos \theta+\frac{1}{2} \sin ^{2} \theta\right) \tag{1.13}
\end{equation*}
$$

The equation of motion in terms of \tilde{V} is

$$
\begin{equation*}
m_{0} R_{0}^{2} \ddot{\theta}=-\frac{\mathrm{d} \tilde{V}}{\mathrm{~d} \theta} \tag{1.14}
\end{equation*}
$$

The stationary solutions (1.11-1.12) occur at points where $\frac{d \tilde{V}}{\mathrm{~d} \theta}=0$ we need to figure out whether these points are minima or maximas of the effective potential. We know when $\omega_{0}=0$ the mass will sit at the bottom of the hoop so $\theta=0$ is the minimum for small ω_{0}. When $\omega_{0}>\sqrt{g / R_{0}^{2}}$ a new there are two new minima which are either side of the center of the hoop at angles $\pm \theta_{E}$ where the centrifugal force is balanced by gravity. When $\omega_{0}>\sqrt{g / R_{0}^{2}}$ the position at the bottom of the hoop $(\theta=0)$ has a minima on either side of it so in this case $\theta=0$ is a maxima. In all cases the point at the top of the hoop $\theta=\pi$ is a maxima of the effective potential. The above can be confirmed mathematically using the second derivative of the effective potential,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}=m_{0} R_{0}^{2} \omega_{0}^{2}\left(\sin ^{2} \theta-\cos ^{2} \theta+\frac{g}{\omega_{0}^{2} R_{0}} \cos \theta\right) \tag{1.15}
\end{equation*}
$$

- When $\theta=0$ we have

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta=0}=m_{0} R_{0}^{2} \omega_{0}^{2}\left(-1+\frac{g}{\omega_{0}^{2} R_{0}}\right) \tag{1.16}
\end{equation*}
$$

There are two cases: (I) when $g<\omega_{0} R_{0}^{2}$ we have $\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta=0}>0$ so $\theta=0$ is a local minimum of \tilde{V} and (II) when $g>\omega_{0} R_{0}^{2}$ we have $\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta=0}<0$ so $\theta=0$ is a local maximum.

- When $\cos \theta=\frac{g}{\omega_{0}^{2} R_{0}}$ we have $\sin \theta=\sqrt{1-\left(\frac{g}{\omega_{0}^{2} R_{0}}\right)^{2}}$ so that

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta= \pm \theta_{E}}=m_{0} R_{0}^{2} \omega_{0}^{2}\left(1-\frac{g^{2}}{\omega_{0}^{4} R_{0}^{2}}\right) \tag{1.17}
\end{equation*}
$$

so $\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta= \pm \theta_{E}}>0$ when $g<\omega_{0} R_{0}^{2}$ and we have a minimum of \tilde{V} otherwise we have a local maximum.
The above analysis implies that the stationary point with lowest effective potential is,

$$
\theta=\theta_{s}= \begin{cases}\theta=0 & \text { for } g>\omega_{0}^{2} R_{0} \tag{1.18}\\ \pm \arccos \left(\frac{g}{\omega_{0}^{2} R_{0}}\right) & \text { for } g<\omega_{0}^{2} R_{0}\end{cases}
$$

(ii)

Write $\theta=\theta_{s}+\phi$ where θ_{s} is the stationary solution (1.18) then the equation of motion is

$$
\begin{equation*}
m_{0} R_{0}^{2} \ddot{\phi}=-\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta=\theta_{s}} \phi+\ldots \tag{1.19}
\end{equation*}
$$

and so for small oscillations (ϕ small) we have .

$$
\begin{equation*}
m_{0} R_{0}^{2} \ddot{\phi} \approx-\left.\frac{\mathrm{d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta=\theta_{s}} \phi \tag{1.20}
\end{equation*}
$$

so putting $\phi(t)=a e^{i \omega t}$ we find

$$
\begin{equation*}
\omega=\sqrt{\left.\frac{1}{m_{0} R_{0}^{2}} \frac{\mathrm{~d}^{2} \tilde{V}}{\mathrm{~d} \theta^{2}}\right|_{\theta=\theta_{s}}} \tag{1.21}
\end{equation*}
$$

substituting in equations (1.16) and (1.17) we have

$$
\omega= \begin{cases} \pm \omega_{0} \sqrt{\frac{g}{\omega_{0}^{2} R_{0}}-1} & \text { for } g>\omega_{0}^{2} R_{0} \tag{1.22}\\ \pm \omega_{0} \sqrt{1-\frac{g^{2}}{\omega_{0}^{2} R_{0}^{2}}} & \text { for } g<\omega_{0}^{2} R_{0} .\end{cases}
$$

Question 1 is worth 7 marks: 1 mark for getting a Lagrangian equivalent to that in equation (1.8) (the angle θ can be defined a number of different ways all were accepted as long as they rotated with the plane), 1 mark for an equation of motion equivalent to (1.9), 2 marks for identifying $\theta=0$ and $\theta= \pm \theta_{E}$ as in equations (1.11-1.12) or equivalent, 1 mark for identifying that stable equilibrium changes depending on whether or not $g>\omega_{0}^{2} R$) and 2 marks for the correct frequencies given in equation (1.22).

2 Question 2:

part a)

The position vector of the mass is

$$
\begin{equation*}
\mathbf{r}(t)=r(t)\left[\cos \left(\omega_{0} t\right) \hat{\mathbf{e}}_{x}+\sin \left(\omega_{0} t\right) \hat{\mathbf{e}}_{y}\right] \equiv r(t) \hat{\mathbf{e}}_{r} \tag{2.1}
\end{equation*}
$$

therefore

$$
\begin{align*}
\dot{\mathbf{r}} & =\dot{\mathrm{r}} \hat{\mathbf{e}}_{r}+r \omega_{0} \hat{\mathbf{e}}_{\theta} \tag{2.2}\\
\text { with } \hat{\mathbf{e}}_{\theta} & =-\sin \left(\omega_{0} t\right) \hat{\mathbf{e}}_{x}+\cos \left(\omega_{0} t\right) \hat{\mathbf{e}}_{y} . \tag{2.3}
\end{align*}
$$

So the Lagrangian in the rotating frame is

$$
\begin{equation*}
\mathcal{L}^{\prime}=\frac{1}{2} m\left(\dot{r}^{2}+\omega_{0}^{2} r^{2}\right) \tag{2.4}
\end{equation*}
$$

and the equation of motion is

$$
\begin{equation*}
\ddot{r}=\omega_{0}^{2} r \tag{2.5}
\end{equation*}
$$

part b)

The solution of the equation of motion is

$$
\begin{equation*}
r(t)=A_{+} e^{\omega_{0} t}+A_{-} e^{-\omega_{0} t} . \tag{2.6}
\end{equation*}
$$

So the initial condition $\dot{r}(0)=0$ is equivalent to

$$
\begin{equation*}
\omega_{0}\left(A_{+}-A_{-}\right)=0_{3} \quad \Rightarrow \quad A_{-}=A_{+} \tag{2.7}
\end{equation*}
$$

thus $r(t)$ is

$$
\begin{equation*}
r(t)=\frac{A_{+}}{2} \cosh \omega_{0} t \tag{2.8}
\end{equation*}
$$

Written in terms of the initial radius we have

$$
\begin{equation*}
r(t)=r(0) \cosh \omega_{0} t \tag{2.9}
\end{equation*}
$$

Question 2 is worth 3 marks: 1 mark for determining the equation of motion (2.5), 1 mark for correctly identifying the general solution (2.6) and 1 mark for imposing the initial conditions to get a relationship like equation (2.7) relating the undetermined parameters.

