Phys 306 Homework 1 solutions. February 7, 2017

Marking scheme in red.

1 Question 1:

part a)
The equation of motion for the position coordinate ¢(t) is

G+ 274+ wiq = fob(t)

with
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We are interested in the case where ¢ > 0 so that 6(¢) = 1 so we have to solve
G+ 274 +wiq = fo.
‘We know that the solution to (1.5) is of the form,

q(t) = p(t) + 2(t)

where p(t) is any solution to (1.5) and z(t) is the solution to the equation with out any forcing

&+ 2y + wiz = 0.

The solution to the equation (1.7) is given in the lecture notes

Ae 7 cos(Qot + @) for v < wy
z(t) = e (Aypel 4+ A_e= ! fory > wy
(Al + Agt)e_’yt for v = wy
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with Qo = /|wd — 72| and A, Ay, A1, As, ¢ are constants to be determined by the initial conditions. Now we just
need to find a single particular solution p(t) to equation (1.5). The easy way to do this is with a physically motivated
guess. Note that the complimentary solution x(t) dies down as for long times (in all cases) so that at long times
q(t) = p(t) (cf. equation (1.6)). Physically we know that when we apply a constant force to a harmonic oscillator it
will change its equilibrium position and that the damping will cause the oscillators position to tend to its equilibrium
position. From this we see that p(t) = ¢ (constant) is a good guess for the particular solution. Plugging the guess into

(1.5) gives us the equilibrium position

c=19.
wd
So the solution for ¢(t) is
% + Ae " cos(Qot + @) for v < wo
q(t) = j—é + e (Apeolt + A_e=) for y > wo
5%% + (A + Ast)e ™t for v = wo.

Now we have to satisfy the initial conditions. The velocity is

—Ae Qg sin(Qot + @) + v cos(Qot + ¢)] for v < wy
q(t) = q e [A4(Qo — 7)e™" — A_(Q+7)Qoe” P fory > wo
[A2 — A1 + (1 — ) Ast] e for v = wo.

So for zero velocity at ¢ = 0 we have: 1
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o In the underdamped case (wy > 7):

Qosing +ycosp=0 = ¢=—tan ! (3)
0
o In the overdamped case (wy < 7):
A=) =A@ ) =0 = A =- (1224
v+ wo
e In the critically damped case (wy = 7):
Az =74
As the oscillator is at rest for ¢ < 0 it must start at ¢(0) = 0 which means:

e In the underdamped case (wy > 7):

%+Acos¢:0 = A=- Jo

w3 wo COS ¢

but from equation (1.12) we know

Qo Qo
COSp = —F——x= = —
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therefor
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e In the overdamped case (wy < 7):(using (1.13))

fo ( 28 )
0=+ A
wg v+ Qo +

so that
s = EoE)fo
= QW(Q)QQ ’
e In the critically damped case (wg = 7):
A =T
Wo

Putting the everything together we have

fo (1 — et [cos Qot + Qlo sin QOtD for wy >y

q(t) = &y (1 —e [COSh Qot + Qlo sinh QotD for wg < v -

% [1 — 7901 + wpt)] forwy =y
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In getting the above simplification I have used cos(€2:+¢) = cos ¢ cos Qyt—sin ¢ sin Qgt to simplify the underdamped

solution.



part b)

The kinetic energy,

MfS o oo 2
Wgoe Yrsin® Qot forwy >y

T(t) = 54 = ]‘Q/ITJ?@’W sinh?® Qpt  forwy < 7 - (1.22)

%Mfoztzefmot forwg =~

The potential energy V = MwZ[q(t)]?/2 with g(¢) as in (1.21) (I couldn’t find a nice way of simplifying this). The
total energy is then E(t) = T'(¢t) + V(t). Plots are shown below. In the plots the energy is scaled by the final energy

AQ/IJ; which is the total energy added to the system by the external force after a long time. For the underdamped
0

case v/wg = 0.25, for the overdamped case y/wp = 1.25. Note at time ¢ = 0 we have E(0) = V(0) = T(0) = 0in
2
all cases and as t — oo, T'(t) — 0 and E(t) — V(t) — 3k (5—2) in all cases.
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Question 1 is worth 7 marks: 1 mark for recognising that the solution can be written in the form (1.6), 1 mark for
getting that p(t) = % (or another valid answer), 2 marks for correctly implementing the initial conditions ¢(0) = 0 =
0

G(0), 1 mark for explaining how to go from ¢(¢) to T'(¢) and V' (t), 1 mark for a correct plot and 1 mark for treating all
cases (under,over and critically damped).

2  Question 2:
Recall from class the solution for the position of the oscillator in this case is,
x(t) = Ag(w) cos(wt + H(w)) 2.1

where Ap(w) and O(w) are given in equations (31) of the course notes (A in this document corresponds to ag in the
notes and w here is (2 in the notes). We will only need Ay (w) to answer this question,
Fy

A = 2.2
o(w) Mo ((w —3&10)2 + 4’}/2(,02)1/2 (2.2)




wo = 4/ J\/fo - is the resonance frequency. Suppose the driving frequency is the same as the resonant frequency w = wy
then Aq reduces too

F
Ag= ————. 2.3
0= Mgy (2.3)
Part i)
The kinetic, potential and total energies are (assuming wy = w),
M M,
T(t) :7;5@2 = TOL‘JQA2 sin?(wt + 6p) 2.4)
k k M,
V(t) —§x2 = §A2 cos? (wt + 6p) = TOw(Q)Az cos? (wt + ) (2.5)
_ _ My 2 42 2 s2 _ My 2 42
E(t) =T(t) + V() = —~w?A? [cos®(wt + b) + sin® (wi + b) | = —w? A% (2.6)

2 2

Part ii)

The rate of energy dissipated per cycle can be calculated by considering the rate at which work is done by the friction
force Fy, = —nzx,

27w
Wi = — / dani = — / dtni?. 2.7)
one cycle 0

The negative sign here just indicates that the friction force is dissipating energy from the system. So the dissipation per
cycle is

27w 27w
W= / dtni? = / dtnA2w? sin®(wt + 6). (2.8)
0 0
Substitute s = wt ) )
s : 9
W = 2mnA2w / asS(s+6) 2.9
0 27

The integral above is just the average of sin® s over one cycle which is 1 /2 s0
W = 7T’I]A(2)OJ = 27r'yM0wAg (2.10)

Therefore

E wo Q
_ = = 2.11
W dry 27 ( )

Question 2 is worth 3 marks: 1 for something equivalent to equations (2.4-2.6), 1 mark for showing W =
myMowAZ and 1 mark for £ = £.
Note that W in part (ii) is not related to the change of total energy as after a long time the total energy is constant
because the driving is putting energy into the system at the same rate at which the energy is dissipated.



