
Phys 306 Homework 1 solutions. February 7, 2017

Marking scheme in red.

1 Question 1:

part a)
The equation of motion for the position coordinate q(t) is

q̈ + 2γq̇ + ω2
0q = f0θ(t) (1.1)

with

f0 =
F0

M
(1.2)

ω0 =

√
k

M
(1.3)

γ =
η

2M
. (1.4)

We are interested in the case where t > 0 so that θ(t) = 1 so we have to solve

q̈ + 2γq̇ + ω2
0q = f0. (1.5)

We know that the solution to (1.5) is of the form,

q(t) = p(t) + x(t) (1.6)

where p(t) is any solution to (1.5) and x(t) is the solution to the equation with out any forcing

ẍ+ 2γẋ+ ω2
0x = 0. (1.7)

The solution to the equation (1.7) is given in the lecture notes

x(t) =


Ae−γt cos(Ω0t+ φ) for γ < ω0

e−γt
(
A+e

Ω0t +A−e
−Ω0t

)
for γ > ω0

(A1 +A2t)e
−γt for γ = ω0

(1.8)

with Ω0 =
√
|ω2

0 − γ2| and A,A±, A1, A2, φ are constants to be determined by the initial conditions. Now we just
need to find a single particular solution p(t) to equation (1.5). The easy way to do this is with a physically motivated
guess. Note that the complimentary solution x(t) dies down as for long times (in all cases) so that at long times
q(t) = p(t) (cf. equation (1.6)). Physically we know that when we apply a constant force to a harmonic oscillator it
will change its equilibrium position and that the damping will cause the oscillators position to tend to its equilibrium
position. From this we see that p(t) = c (constant) is a good guess for the particular solution. Plugging the guess into
(1.5) gives us the equilibrium position

c =
f0

ω2
0

. (1.9)

So the solution for q(t) is

q(t) =


f0
ω2

0
+Ae−γt cos(Ω0t+ φ) for γ < ω0

f0
ω2

0
+ e−γt

(
A+e

Ω0t +A−e
−Ω0t

)
for γ > ω0

f0
ω2

0
+ (A1 +A2t)e

−γt for γ = ω0.

(1.10)

Now we have to satisfy the initial conditions. The velocity is

q̇(t) =


−Ae−γt[Ω0 sin(Ω0t+ φ) + γ cos(Ω0t+ φ)] for γ < ω0

e−γt
[
A+(Ω0 − γ)eΩ0t −A−(Ω + γ)Ω0e

−Ω0t
]

for γ > ω0

[A2 − γA1 + (1− γ)A2t] e
−γt for γ = ω0.

(1.11)

So for zero velocity at t = 0 we have:
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• In the underdamped case (ω0 > γ):

Ω0 sinφ+ γ cosφ = 0 ⇒ φ = − tan−1

(
γ

Ω0

)
(1.12)

• In the overdamped case (ω0 < γ):

A+(Ω0 − γ)−A−(Ω0 + γ) = 0 ⇒ A− = −
(
γ − Ω0

γ + ω0

)
A+ (1.13)

• In the critically damped case (ω0 = γ):
A2 = γA1 (1.14)

As the oscillator is at rest for t < 0 it must start at q(0) = 0 which means:

• In the underdamped case (ω0 > γ):

f

ω2
0

+A cosφ = 0 ⇒ A = − f0

ω0 cosφ
(1.15)

but from equation (1.12) we know

cosφ =
Ω0√

Ω2
0 + γ2

=
Ω0

ω0
(1.16)

therefor
A = − f0

ω0Ω0
(1.17)

• In the overdamped case (ω0 < γ):(using (1.13))

0 =
f0

ω2
0

+

(
2Ω0

γ + Ω0

)
A+ (1.18)

so that

A± = − (Ω0 ± γ)f0

2ω2
0Ω0

. (1.19)

• In the critically damped case (ω0 = γ):

A1 = − f0

ω2
0

. (1.20)

Putting the everything together we have

q(t) =



f0
ω2

0

(
1− e−γt

[
cos Ω0t+ γ

Ω0
sin Ω0t

])
for ω0 > γ

f0
ω2

0

(
1− e−γt

[
cosh Ω0t+ γ

Ω0
sinh Ω0t

])
for ω0 < γ

f0t
ω0

[1− e−ω0t(1 + ω0t)] forω0 = γ

. (1.21)

In getting the above simplification I have used cos(Ωt+φ) = cosφ cos Ω0t−sinφ sin Ω0t to simplify the underdamped
solution.
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part b)
The kinetic energy,

T (t) =
M

2
q̇2 =



Mf2
0

2Ω2
0
e−2γt sin2 Ω0t for ω0 > γ

Mf2
0

2Ω2
0
e−2γt sinh2 Ω0t for ω0 < γ

1
2Mf2

0 t
2e−2ω0t forω0 = γ

. (1.22)

The potential energy V = Mω2
0 [q(t)]2/2 with q(t) as in (1.21) (I couldn’t find a nice way of simplifying this). The

total energy is then E(t) = T (t) + V (t). Plots are shown below. In the plots the energy is scaled by the final energy
ε =

Mf2
0

2ω2
0

which is the total energy added to the system by the external force after a long time. For the underdamped
case γ/ω0 = 0.25, for the overdamped case γ/ω0 = 1.25. Note at time t = 0 we have E(0) = V (0) = T (0) = 0 in

all cases and as t→∞, T (t)→ 0 and E(t)→ V (t)→ 1
2k
(
f0
ω0

)2

in all cases.

Question 1 is worth 7 marks: 1 mark for recognising that the solution can be written in the form (1.6), 1 mark for
getting that p(t) = f0

ω2
0

(or another valid answer), 2 marks for correctly implementing the initial conditions q(0) = 0 =

q̇(0), 1 mark for explaining how to go from q(t) to T (t) and V (t), 1 mark for a correct plot and 1 mark for treating all
cases (under,over and critically damped).

2 Question 2:
Recall from class the solution for the position of the oscillator in this case is,

x(t) = A0(ω) cos(ωt+ θ(ω)) (2.1)

where A0(ω) and θ(ω) are given in equations (31) of the course notes (A0 in this document corresponds to a0 in the
notes and ω here is Ω in the notes). We will only need A0(ω) to answer this question,

A0(ω) =
F0

M0 ((ω − ω0)2 + 4γ2ω2)
1/2

(2.2)
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ω0 =
√

k
M0s

is the resonance frequency. Suppose the driving frequency is the same as the resonant frequency ω = ω0

then A0 reduces too

A0 =
F

2M0γω0
. (2.3)

Part i)
The kinetic, potential and total energies are (assuming ω0 = ω),

T (t) =
M

2
ẋ2 =

M0

2
ω2A2 sin2(ωt+ θ0) (2.4)

V (t) =
k

2
x2 =

k

2
A2 cos2(ωt+ θ0) =

M0

2
ω2

0A
2 cos2(ωt+ θ0) (2.5)

E(t) =T (t) + V (t) =
M0

2
ω2A2

[
cos2(ωt+ θ0) + sin2(ωt+ θ0)

]
=
M0

2
ω2A2. (2.6)

Part ii)
The rate of energy dissipated per cycle can be calculated by considering the rate at which work is done by the friction
force Ffr = −ηẋ,

Wfr = −
∫

one cycle
dxηẋ = −

∫ 2π/ω

0

dtηẋ2. (2.7)

The negative sign here just indicates that the friction force is dissipating energy from the system. So the dissipation per
cycle is

W =

∫ 2π/ω

0

dtηẋ2 =

∫ 2π/ω

0

dtηA2
0ω

2 sin2(ωt+ θ). (2.8)

Substitute s = ωt

W = 2πηA2
0ω

∫ 2π

0

ds
sin2(s+ θ)

2π
. (2.9)

The integral above is just the average of sin2 s over one cycle which is 1/2 so

W = πηA2
0ω = 2πγM0ωA

2
0 (2.10)

Therefore
E

W
=

ω0

4πγ
=

Q

2π
. (2.11)

Question 2 is worth 3 marks: 1 for something equivalent to equations (2.4-2.6), 1 mark for showing W =
πγM0ωA

2
0 and 1 mark for E

W = Q
2π .

Note that W in part (ii) is not related to the change of total energy as after a long time the total energy is constant
because the driving is putting energy into the system at the same rate at which the energy is dissipated.
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