Marking scheme in red.

1 Question 1:

part a)

The equation of motion for the position coordinate $q(t)$ is

$$
\begin{equation*}
\ddot{q}+2 \gamma \dot{q}+\omega_{0}^{2} q=f_{0} \theta(t) \tag{1.1}
\end{equation*}
$$

with

$$
\begin{align*}
& f_{0}=\frac{F_{0}}{M} \tag{1.2}\\
& \omega_{0}=\sqrt{\frac{k}{M}} \tag{1.3}\\
& \gamma=\frac{\eta}{2 M} \tag{1.4}
\end{align*}
$$

We are interested in the case where $t>0$ so that $\theta(t)=1$ so we have to solve

$$
\begin{equation*}
\ddot{q}+2 \gamma \dot{q}+\omega_{0}^{2} q=f_{0} \tag{1.5}
\end{equation*}
$$

We know that the solution to (1.5) is of the form,

$$
\begin{equation*}
q(t)=p(t)+x(t) \tag{1.6}
\end{equation*}
$$

where $p(t)$ is any solution to (1.5) and $x(t)$ is the solution to the equation with out any forcing

$$
\begin{equation*}
\ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=0 . \tag{1.7}
\end{equation*}
$$

The solution to the equation (1.7) is given in the lecture notes

$$
x(t)= \begin{cases}A e^{-\gamma t} \cos \left(\Omega_{0} t+\phi\right) & \text { for } \gamma<\omega_{0} \tag{1.8}\\ e^{-\gamma t}\left(A_{+} e^{\Omega_{0} t}+A_{-} e^{-\Omega_{0} t}\right) & \text { for } \gamma>\omega_{0} \\ \left(A_{1}+A_{2} t\right) e^{-\gamma t} & \text { for } \gamma=\omega_{0}\end{cases}
$$

with $\Omega_{0}=\sqrt{\left|\omega_{0}^{2}-\gamma^{2}\right|}$ and $A, A_{ \pm}, A_{1}, A_{2}, \phi$ are constants to be determined by the initial conditions. Now we just need to find a single particular solution $p(t)$ to equation (1.5). The easy way to do this is with a physically motivated guess. Note that the complimentary solution $x(t)$ dies down as for long times (in all cases) so that at long times $q(t)=p(t)$ (cf. equation (1.6)). Physically we know that when we apply a constant force to a harmonic oscillator it will change its equilibrium position and that the damping will cause the oscillators position to tend to its equilibrium position. From this we see that $p(t)=c$ (constant) is a good guess for the particular solution. Plugging the guess into (1.5) gives us the equilibrium position

$$
\begin{equation*}
c=\frac{f_{0}}{\omega_{0}^{2}} \tag{1.9}
\end{equation*}
$$

So the solution for $q(t)$ is

$$
q(t)= \begin{cases}\frac{f_{0}}{\omega_{0}^{2}}+A e^{-\gamma t} \cos \left(\Omega_{0} t+\phi\right) & \text { for } \gamma<\omega_{0} \tag{1.10}\\ \frac{f_{0}}{\omega_{0}^{2}}+e^{-\gamma t}\left(A_{+} e^{\Omega_{0} t}+A_{-} e^{-\Omega_{0} t}\right) & \text { for } \gamma>\omega_{0} \\ \frac{f_{0}}{\omega_{0}^{2}}+\left(A_{1}+A_{2} t\right) e^{-\gamma t} & \text { for } \gamma=\omega_{0}\end{cases}
$$

Now we have to satisfy the initial conditions. The velocity is

$$
\dot{q}(t)= \begin{cases}-A e^{-\gamma t}\left[\Omega_{0} \sin \left(\Omega_{0} t+\phi\right)+\gamma \cos \left(\Omega_{0} t+\phi\right)\right] & \text { for } \gamma<\omega_{0} \tag{1.11}\\ e^{-\gamma t}\left[A_{+}\left(\Omega_{0}-\gamma\right) e^{\Omega_{0} t}-A_{-}(\Omega+\gamma) \Omega_{0} e^{-\Omega_{0} t}\right] & \text { for } \gamma>\omega_{0} \\ {\left[A_{2}-\gamma A_{1}+(1-\gamma) A_{2} t\right] e^{-\gamma t}} & \text { for } \gamma=\omega_{0}\end{cases}
$$

So for zero velocity at $t=0$ we have:

- In the underdamped case $\left(\omega_{0}>\gamma\right)$:

$$
\begin{equation*}
\Omega_{0} \sin \phi+\gamma \cos \phi=0 \quad \Rightarrow \quad \phi=-\tan ^{-1}\left(\frac{\gamma}{\Omega_{0}}\right) \tag{1.12}
\end{equation*}
$$

- In the overdamped case $\left(\omega_{0}<\gamma\right)$:

$$
\begin{equation*}
A_{+}\left(\Omega_{0}-\gamma\right)-A_{-}\left(\Omega_{0}+\gamma\right)=0 \quad \Rightarrow \quad A_{-}=-\left(\frac{\gamma-\Omega_{0}}{\gamma+\omega_{0}}\right) A_{+} \tag{1.13}
\end{equation*}
$$

- In the critically damped case $\left(\omega_{0}=\gamma\right)$:

$$
\begin{equation*}
A_{2}=\gamma A_{1} \tag{1.14}
\end{equation*}
$$

As the oscillator is at rest for $t<0$ it must start at $q(0)=0$ which means:

- In the underdamped case $\left(\omega_{0}>\gamma\right)$:

$$
\begin{equation*}
\frac{f}{\omega_{0}^{2}}+A \cos \phi=0 \quad \Rightarrow \quad A=-\frac{f_{0}}{\omega_{0} \cos \phi} \tag{1.15}
\end{equation*}
$$

but from equation (1.12) we know

$$
\begin{equation*}
\cos \phi=\frac{\Omega_{0}}{\sqrt{\Omega_{0}^{2}+\gamma^{2}}}=\frac{\Omega_{0}}{\omega_{0}} \tag{1.16}
\end{equation*}
$$

therefor

$$
\begin{equation*}
A=-\frac{f_{0}}{\omega_{0} \Omega_{0}} \tag{1.17}
\end{equation*}
$$

- In the overdamped case $\left(\omega_{0}<\gamma\right)$:(using (1.13))

$$
\begin{equation*}
0=\frac{f_{0}}{\omega_{0}^{2}}+\left(\frac{2 \Omega_{0}}{\gamma+\Omega_{0}}\right) A_{+} \tag{1.18}
\end{equation*}
$$

so that

$$
\begin{equation*}
A_{ \pm}=-\frac{\left(\Omega_{0} \pm \gamma\right) f_{0}}{2 \omega_{0}^{2} \Omega_{0}} \tag{1.19}
\end{equation*}
$$

- In the critically damped case $\left(\omega_{0}=\gamma\right)$:

$$
\begin{equation*}
A_{1}=-\frac{f_{0}}{\omega_{0}^{2}} \tag{1.20}
\end{equation*}
$$

Putting the everything together we have

$$
q(t)= \begin{cases}\frac{f_{0}}{\omega_{0}^{2}}\left(1-e^{-\gamma t}\left[\cos \Omega_{0} t+\frac{\gamma}{\Omega_{0}} \sin \Omega_{0} t\right]\right) & \text { for } \omega_{0}>\gamma \tag{1.21}\\ \frac{f_{0}}{\omega_{0}^{2}}\left(1-e^{-\gamma t}\left[\cosh \Omega_{0} t+\frac{\gamma}{\Omega_{0}} \sinh \Omega_{0} t\right]\right) & \text { for } \omega_{0}<\gamma \\ \frac{f_{0} t}{\omega_{0}}\left[1-e^{-\omega_{0} t}\left(1+\omega_{0} t\right)\right] & \text { for } \omega_{0}=\gamma\end{cases}
$$

In getting the above simplification I have used $\cos \left(\Omega_{t}+\phi\right)=\cos \phi \cos \Omega_{0} t-\sin \phi \sin \Omega_{0} t$ to simplify the underdamped solution.

part b)

The kinetic energy,

$$
T(t)=\frac{M}{2} \dot{q}^{2}= \begin{cases}\frac{M f_{0}^{2}}{2 \Omega_{0}^{2}} e^{-2 \gamma t} \sin ^{2} \Omega_{0} t & \text { for } \omega_{0}>\gamma \tag{1.22}\\ \frac{M f_{0}^{2}}{2 \Omega_{0}^{2}} e^{-2 \gamma t} \sinh ^{2} \Omega_{0} t & \text { for } \omega_{0}<\gamma \\ \frac{1}{2} M f_{0}^{2} t^{2} e^{-2 \omega_{0} t} & \text { for } \omega_{0}=\gamma\end{cases}
$$

The potential energy $V=M \omega_{0}^{2}[q(t)]^{2} / 2$ with $q(t)$ as in (1.21) (I couldn't find a nice way of simplifying this). The total energy is then $E(t)=T(t)+V(t)$. Plots are shown below. In the plots the energy is scaled by the final energy $\epsilon=\frac{M f_{0}^{2}}{2 \omega_{0}^{2}}$ which is the total energy added to the system by the external force after a long time. For the underdamped case $\gamma / \omega_{0}=0.25$, for the overdamped case $\gamma / \omega_{0}=1.25$. Note at time $t=0$ we have $E(0)=V(0)=T(0)=0$ in all cases and as $t \rightarrow \infty, T(t) \rightarrow 0$ and $E(t) \rightarrow V(t) \rightarrow \frac{1}{2} k\left(\frac{f_{0}}{\omega_{0}}\right)^{2}$ in all cases.

Question 1 is worth 7 marks: 1 mark for recognising that the solution can be written in the form (1.6), 1 mark for getting that $p(t)=\frac{f_{0}}{\omega_{0}^{2}}$ (or another valid answer), 2 marks for correctly implementing the initial conditions $q(0)=0=$ $\dot{q}(0), 1$ mark for explaining how to go from $q(t)$ to $T(t)$ and $V(t), 1$ mark for a correct plot and 1 mark for treating all cases (under,over and critically damped).

2 Question 2:

Recall from class the solution for the position of the oscillator in this case is,

$$
\begin{equation*}
x(t)=A_{0}(\omega) \cos (\omega t+\theta(\omega)) \tag{2.1}
\end{equation*}
$$

where $A_{0}(\omega)$ and $\theta(\omega)$ are given in equations (31) of the course notes (A_{0} in this document corresponds to a_{0} in the notes and ω here is Ω in the notes). We will only need $A_{0}(\omega)$ to answer this question,

$$
\begin{equation*}
A_{0}(\omega)=\frac{F_{0}}{M_{0}\left(\left(\omega-3 \omega_{0}\right)^{2}+4 \gamma^{2} \omega^{2}\right)^{1 / 2}} \tag{2.2}
\end{equation*}
$$

$\omega_{0}=\sqrt{\frac{k}{M_{0} s}}$ is the resonance frequency. Suppose the driving frequency is the same as the resonant frequency $\omega=\omega_{0}$ then A_{0} reduces too

$$
\begin{equation*}
A_{0}=\frac{F}{2 M_{0} \gamma \omega_{0}} \tag{2.3}
\end{equation*}
$$

Part i)

The kinetic, potential and total energies are (assuming $\omega_{0}=\omega$),

$$
\begin{align*}
& T(t)=\frac{M}{2} \dot{x}^{2}=\frac{M_{0}}{2} \omega^{2} A^{2} \sin ^{2}\left(\omega t+\theta_{0}\right) \tag{2.4}\\
& V(t)=\frac{k}{2} x^{2}=\frac{k}{2} A^{2} \cos ^{2}\left(\omega t+\theta_{0}\right)=\frac{M_{0}}{2} \omega_{0}^{2} A^{2} \cos ^{2}\left(\omega t+\theta_{0}\right) \tag{2.5}\\
& E(t)=T(t)+V(t)=\frac{M_{0}}{2} \omega^{2} A^{2}\left[\cos ^{2}\left(\omega t+\theta_{0}\right)+\sin ^{2}\left(\omega t+\theta_{0}\right)\right]=\frac{M_{0}}{2} \omega^{2} A^{2} \tag{2.6}
\end{align*}
$$

Part ii)

The rate of energy dissipated per cycle can be calculated by considering the rate at which work is done by the friction force $F_{\mathrm{fr}}=-\eta \dot{x}$,

$$
\begin{equation*}
W_{\mathrm{fr}}=-\int_{\text {one cycle }} \mathrm{d} x \eta \dot{x}=-\int_{0}^{2 \pi / \omega} \mathrm{d} t \eta \dot{x}^{2} \tag{2.7}
\end{equation*}
$$

The negative sign here just indicates that the friction force is dissipating energy from the system. So the dissipation per cycle is

$$
\begin{equation*}
W=\int_{0}^{2 \pi / \omega} \mathrm{d} t \eta \dot{x}^{2}=\int_{0}^{2 \pi / \omega} \mathrm{d} t \eta A_{0}^{2} \omega^{2} \sin ^{2}(\omega t+\theta) \tag{2.8}
\end{equation*}
$$

Substitute $s=\omega t$

$$
\begin{equation*}
W=2 \pi \eta A_{0}^{2} \omega \int_{0}^{2 \pi} \mathrm{~d} s \frac{\sin ^{2}(s+\theta)}{2 \pi} \tag{2.9}
\end{equation*}
$$

The integral above is just the average of $\sin ^{2} s$ over one cycle which is $1 / 2$ so

$$
\begin{equation*}
W=\pi \eta A_{0}^{2} \omega=2 \pi \gamma M_{0} \omega A_{0}^{2} \tag{2.10}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{E}{W}=\frac{\omega_{0}}{4 \pi \gamma}=\frac{Q}{2 \pi} \tag{2.11}
\end{equation*}
$$

Question 2 is worth 3 marks: 1 for something equivalent to equations (2.4-2.6), 1 mark for showing $W=$ $\pi \gamma M_{0} \omega A_{0}^{2}$ and 1 mark for $\frac{E}{W}=\frac{Q}{2 \pi}$.
Note that W in part (ii) is not related to the change of total energy as after a long time the total energy is constant because the driving is putting energy into the system at the same rate at which the energy is dissipated.

