
2nd Assignment

February 2, 2017

1(a)

figure 1pt The figure should show detail of how you define your angles, and it should make
sense with your initial conditions later when you solve the Lagrange’s equations.

We make an ansatz here that the angles are measured from the three equi-spaced points in the
figure. Then, positions of 3 masses in polar coordinates, (r, θ)

(R0, θ1), (R0, θ2), (R0, θ3)

The angels between masses1 are

2π/3 + θ2 − θ1, 2π/3 + θ3 − θ2, 2π/3 + θ1 − θ3,

The tension of springs are acting on the circle. We can solve this system as a periodical, 3
masses, 1 dimensional coupled oscillation.

The potential energy

V =
1

2
k0R

2
0

(
(2π/3 + θ2 − θ1)2 + (2π/3 + θ3 − θ2)2 + (2π/3 + θ1 − θ3)2

)
Minimize potential.

∂θ1V = k0R
2
0(2θ1 − θ2 − θ3) = 0

∂θ2V = k0R
2
0(−θ1 − θ2 + 2θ3) = 0

∂θ3V = k0R
2
0(−θ1 − θ2 + 2θ3) = 0

Therefore, θ1 = θ2 = θ3 = 2π/3. Our ansatz makes sense. 1 pt for the proper reasoning and result

1The relative angles from the 3 spaced points
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The kinetic energy is

T =
mR2

0

2

(
θ̇21 + θ̇22 + θ̇23

)
The Lagrange’s equations

mR2
0θ̈1 + k0R

2
0(2θ1 − θ2 − θ3) = 0

mR2
0θ̈2 + k0R

2
0(−θ1 + 2θ2 − θ3) = 0

mR2
0θ̈3 + k0R

2
0(−θ1 − θ2 + 2θ3) = 0

2 (b)
Let θi = Ai exp(iωt)

−ω2mR2
0A1 + k0R

2
0(2A1 − A2 − A3) = 0

−ω2mR2
0A2 + k0R

2
0(−A1 + 2A2 − A3) = 0

−ω2mR2
0A3 + k0R

2
0(−A1 − A2 + 2A3) = 0

M =

 2k0R
2
0 −mR2

0ω
2 −k0R2

0 −k0R2
0

−k0R2
0 2k0R

2
0 −mR2

0ω
2 −k0R2

0

−k0R2
0 k0R

2
0 2k0R

2
0 −mR2

0ω
2


Det(M) = mR6

0ω
2
(
−m2ω4 + 6k0mω

2 − 9k20
)

ω = 0, ±
√

3k0
m

1pt

For ω = 0,

M =

 2k0R
2
0 −k0R2

0 −k0R2
0

−k0R2
0 2k0R

2
0 −k0R2

0

−k0R2
0 −k0R2

0 2k0R
2
0


ω = 0 leads linear motion, so the corresponding solution is

(c1 + c2t)

 A1

A2

A3

 = (c1 + c2t)

 1
1
1


For ω = ±

√
3k0
m

,

M =

 −k0R2
0 −k0R2

0 −k0R2
0

−k0R2
0 −k0R2

0 −k0R2
0

−k0R2
0 −k0R2

0 −k0R2
0


Here, we have a condition, A1 +A2 +A3 = 0, and two corresponding orthogonal eigenvectors.

Without loss of generality, A1 = 1. We can choose two A2 and A3 which satisfy A2 + A3 = −1.
From intuition of the initial condition we will meet later and some experience of 1- dimensional 3
masses coupled oscillations, we can choose A2 = 0, and, therefore, A3 = −1. As the result of the
choice, the remained normal mode must be (1,−2, 1) because it should be orthogonal to (1, 1, 1)

and (1, 0,−1). Because we have ω = ±
√

3k0
m

, the resultant oscillation should be the combination

of exp(
√

3k0
m

) and exp(−
√

3k0
m

). This can be replaced by the combination of sine and cosine.
Thus, corresponding and orthogonal solutions are
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(c3 cos

√
3k0
m
t+ c4 sin

√
3k0
m
t)

 1
0
−1


and

(c5 cos

√
3k0
m
t+ c6 sin

√
3k0
m
t)

 1
−2
1


The full solution is ( 1pt for proper orthogonal normal modes ) θ1
θ2
θ3

 = (c1+c2t)

 1
1
1

+(c3 cos

√
3k0
m
t+c4 sin

√
3k0
m
t)

 1
0
−1

+(c5 cos

√
3k0
m
t+c6 sin

√
3k0
m
t)

 1
−2
1


(i) 1pt for both initial conditions
Stationary condition yields the time derivative initial condition

~̇
0θ =

 θ̇01
θ̇02
θ̇03

 =

 0
0
0


(ii)
From the above figure, we have set three equilibrium points are at (0, 2π/3, 4π/3). m1 is at 0,

and both m2 and m3 are at the opposite position on a circle. I have a positive sign along clockwise
direction. By my convention, the angle of m2 is +π/3 from the 2nd equilibrium point. Similarly,
m3 placed at +2π/3 from the 3rd equilibrium point.

~θ0 =

 θ01
θ02
θ03

 =

 0
π
3
2π
3


By time derivative initial condition, c2 = c4 = c6 = 0, by the angle initial condition, c1 = π/3,

c3 = c5 = −π/6
The final solution is ( 1pt )

 θ1
θ2
θ3

 =

 π/3(1− cos
√

3k0
m
t)

π/3

π/3(1 + cos
√

3k0
m
t)


If your solution contains cosine and minus cosine with the correct coefficients, you get full

marks. For example, if you use (π/3, 0,−π/3) as an initial condition, you will get ~θ = π/3 cos
√

3k0
m
t(−1, 0, 1).

Both solutions physically indicate that one mass is at rest and other two oscillate in opposite di-
rection with same magnitude of the amplitude. These are sum of two normal modes, (1, 1, 1) and
(1, 0,−1).

2.
(i) mass : kg, spring constant : kg/s2 ( 1pt )
(a) ( 1pt )
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z1 : ~F = −k~z1 = −2× 5× 103 m · kg /s2 ẑ = −104 m · kg /s2 ẑ
z2 : ~F = −k~z2 = −8× 5× 103 m · kg /s2 ẑ = −4× 104 m · kg /s2 ẑ
(b)
z1 : E = 1

2
kz21 = 1

2
× 5× 103 × 4m2 = 104 J

z2 : E = 1
2
kz21 = 1

2
× 5× 103 × 64m2 = 1.6× 105 J

ω =
√

k
M

=
√

5×103kg /s2

2×104kg
= 1/2Hz ( 1pt for energy and angular frequency )

∆z(t) = A cosωt
Kinetic Energy : K = 1

2
M∆ż2 = 1

2
MA2ω2 sin2 ωt

Potential energy by gravity is canceled by floating.
Power : P = dK

dt
= 1

2
M∆ż2 = 1

2
MA2ω3 sin 2ωt

Period : T = 2π/ω
Mean Power : ( 1pt for power and mean power )
Because the all kinetic energy are extracted.
1
T

∫ T
0
|P | dt = 1

2
MA2ω3 × 2

π
= 1/2× 2× 104kg × 22m2 × 1/23Hz3 × 2

π
= 3183.1Watt. 2

Besides, mean power of sine function is obtained from the root mean square. I will give you
full marks for this, too.√

1
T

∫ T
0
P 2 dt = 1

2
MA2ω3 ×

√
1
2

= 1/2 × 2 × 104kg × 22m2 × 1/23Hz3 ×
√

1
2

= 3535.53

Watt. 3

2Mean of | sin t| is
√

2
π . In other words, 1

2π

∫ 2π

0
| sin t|dt =

√
2
π

3RMS of sin t is
√

1
2 .
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