
Phys 306 Homework 1 solutions. January 19, 2017

Marking scheme in red.

1 Question 1:

part a)
(i)

The Cartesian coordinates of points on a cylinder of radius r are given by,

x =r cosφ (1.1)
y =r sinφ (1.2)
z =z (1.3)

where 0 ≤ φ ≤ 2π and −∞ < z <∞. So differential changes of all coordinates are related by (r is constant)

dx =
dx

dφ
dφ = −r sinφ dφ (1.4)

dy =
dy

dφ
dφ = r cosφ dφ (1.5)

dz =dz. (1.6)

So that ds2 becomes,

ds2 = dx2 + dy2 + dz2 = r2(cos2 φ+ sin2 φ)dφ2 + d2z = r2dφ2 + dz2. (1.7)

Therefor
ds = (r2dφ2 + dz2)

1
2 . (1.8)

Part (i) is worth 1 mark. Full marks are not awarded unless it is clear how the answer is obtained.

(ii)

The Cartesian coordinates of points on a cylinder of radius r are given by,

x =r cosφ sin θ (1.9)
y =r sinφ sin θ (1.10)
z =r cos θ (1.11)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.Thus we have the following differential relations,

dx =
∂x

∂φ
dφ+

∂x

∂θ
dθ = −r sinφ sin θ dφ+ r cosφ cos θ dθ (1.12)

dy =
∂y

∂φ
dφ+

∂y

∂θ
dθ = r cosφ sin θ dφ+ r sinφ cos θ dθ (1.13)

dz =
dz

dθ
dθ = −r sin θ dθ (1.14)

therefor

ds2 =r2
[(
sin2 φ sin2 θ + cos2 φ sin2 θ

)
dφ2 +

(
cos2 φ cos2 θ + sin2 φ cos2 θ + sin2 θ

)
dθ2

+ 2 (sinφ cosφ sin θ cos θ − sinφ cosφ sin θ cos θ) dφdθ
]

(1.15)

=r2
(
sin2 θdφ2 + dθ2

)
. (1.16)

So

ds = r
(
sin2 θ dφ2 + dθ

) 1
2 (1.17)

Part (ii) is worth 1 mark. Full marks are not awarded unless it is clear how the answer is obtained.
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(iii)

For Cartesian coordinates
ds = (dx2 + dy2 + dz2)

1
2 . (1.18)

Cylindrical coordinates are defined in equations (1.1-1.3) except now r is allowed to vary so that

dx =
∂x

∂φ
dφ+

∂x

∂r
dr = −r sinφdφ+ cosφ dr (1.19)

dy =
∂y

∂φ
dφ+

∂r

∂r
dr = r cosφdφ+ sinφdr (1.20)

dz =dz (1.21)

plugging these into (1.18) and simplifying gives,

ds =
[
r2dφ2 + dr2 + dz2

] 1
2 . (cylindrical coordinates) (1.22)

Spherical coordinates are defined in equations (1.9-1.11). We get the following differential relations

dx =
∂x

∂φ
dφ+

∂x

∂θ
dθ +

∂x

∂r
dr = −r sinφ sin θ dφ+ r cosφ cos θ dθ + cosφ sinφdr (1.23)

dy =
∂y

∂φ
dφ+

∂y

∂θ
dθ +

∂y

∂r
dr = r cosφ sin θ dφ+ r sinφ cos θ dθ + sinφ sin θ dr (1.24)

dz =
∂z

∂θ
dθ +

∂z

∂r
d r = −r sin θ dθ + cos θ dr (1.25)

plugging these into (1.18) and simplifying gives,

ds =
[
r2
(
sin2 θdφ2 + dθ2

)
+ dr2

] 1
2 . (Spherical coordinates) (1.26)

Part (iii) is worth 2 marks. One mark for each of the boxed equations. Full marks are not awarded unless it is clear
how the answer is obtained.

Part b)
Consider the motion of a particle which starts at (z1, φ1) at time t1 and ends at (x2, φ2) at time t1, the differentials of
the coordinate of the particle may be written

dφ = φ̇ dt (1.27)
dz = ż dz. (1.28)

So that the length of the particles path ` is

` =

∫ (z2,φ2)

(z1,φ1)

ds =

∫ t2

t1

dt

√
R2

0φ̇
2 + ż2 ≡

∫ t2

t1

dtf(φ̇, ż, φ, z). (1.29)

We can find the paths for which ` is minimised using the Euler-Lagrange equations

d

dt

(
∂f

∂φ̇

)
− ∂f

∂φ
=

d

dt

 R2
0φ̇√

R2
0φ̇

2 + ż2

 = 0 (1.30)

d

dt

(
∂f

∂ż

)
− ∂f

∂z
=

d

dt

 ż√
R2

0φ̇
2 + ż2

 = 0. (1.31)
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Integrating both of these with respect to time gives

R2
0φ̇√

R2
0φ̇

2 + ż2
= c1 (1.32)

ż√
R2

0φ̇
2 + ż2

= c2 (1.33)

where c1 and c2 are constants of integration. Therefore we have

dφ

dz
=

dφ/dt

dz/dt
=

c1
c2R2

0

≡ K. (1.34)

Integrating with respect to z,
φ(z) = Kz + b (1.35)

K and b are integration constants which we see using the end points,

φ1 = Kz1 + b (1.36)
φ2 = Kz2 + b. (1.37)

Subtracting equation (1.36) from (1.37) then rearranging gives

K =
φ2 − φ1
z2 − z1

(1.38)

substituting that back into equation (1.37) then rearranging then gives

b =
φ1z2 − φ2z1
z2 − z1

. (1.39)

so that putting everything together we have

φ(z) =
(φ2 − φ1)z + φ1z2 − φ2z1

z2 − z1
. (1.40)

The expression (1.40) solves the Euler-Lagrange equations with the correct end points but it is not the unique solution
as we can replace φ2 → φ2 + 2πn where n is an integer in the expression (1.40) and still get a solution which has the
same end points. So the shortest path is

φ(z) =
(φ2 + 2φn− φ1)z + φ1z2 − φ2z1 − 2πnz1

z2 − z1
(1.41)

where n is found choseing the value which minimises `,

` =

∫
ds =

∫ φ2+2πn

φ1

dφ

√
1 +

(
dz

dφ

)2

(1.42)

=

√
R2

0 +

(
z2 − z1

φ2 + 2πn− φ1

)2 ∫ φ2+2πn

φ1

dφ (1.43)

=

√
R2

0 +

(
z2 − z1

φ2 + 2πn− φ1

)2

(φ2 + 2πn− φ1) (1.44)

=
√
R2

0(φ2 + 2πn− φ1)2 + (z2 − z1)2. (1.45)

We can see from equation (1.45) that ` is minimised when (φ2 − φ1 + 2πn)2 is minimised. When |φ2 − φ1| = π are
two possible solutions for n (eg if φ2 − φ1 = π the minimum n can be either 0 or −1). This reflects the fact that if the
two points are on exactly opposite sides of the cylinder then both the clockwise and anticlockwise paths will have the
same length.
1b) is worth 4 marks: 1 Mark for deriving a functional for the path length (something like equation (1.29)), 1 mark for
deriving the appropriate Eular-Lagrange equation(s) (equations (1.30) and (1.31) above), 0.5 marks for showing that
the relation between z and φ is linear, 0.5 marks for finding the constants (K and b in the above solution) and 1 mark
for correctly discussing the uniqueness of the path.
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2 Question 2:
In this case the kinetic energy is

T =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 (2.1)

and the total potential energy Vtot is

Vtot =W (x1) +W (x2) + V (x1 − x2). (2.2)

So the Lagrangian is

L = T − Vtot =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 −W (x1)−W (x2)− V (x1 − x2). (2.3)

and the equations of motion are,

0 =
d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= m1ẍ1 +

dW (x1)

dx1
+

dV (x1 − x2)
d(x1 − x2)

(2.4)

0 =
d

dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= m2ẍ2 +

dW (x2)

dx2
− dV (x1 − x2)

d(x1 − x2)
(2.5)

or

m1ẍ1 = −dW (x1)

dx1
− dV (x1 − x2)

d(x1 − x2)
(2.6)

and

m2ẍ2 = −dW (x2)

dx2
+

dV (x1 − x2)
d(x1 − x2)

. (2.7)

Question 2 is worth 2 marks: 1 for the correct Lagrangian (2.3), 1 mark for the correct equations of motion (2.6) and
(2.7).
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