Marking scheme in red.

1 Question 1:

part a)

(i)

The Cartesian coordinates of points on a cylinder of radius r are given by,

$$
\begin{align*}
& x=r \cos \phi \tag{1.1}\\
& y=r \sin \phi \tag{1.2}\\
& z=z \tag{1.3}
\end{align*}
$$

where $0 \leq \phi \leq 2 \pi$ and $-\infty<z<\infty$. So differential changes of all coordinates are related by (r is constant)

$$
\begin{align*}
\mathrm{d} x & =\frac{\mathrm{d} x}{\mathrm{~d} \phi} \mathrm{~d} \phi=-r \sin \phi \mathrm{~d} \phi \tag{1.4}\\
\mathrm{~d} y & =\frac{\mathrm{d} y}{\mathrm{~d} \phi} \mathrm{~d} \phi=r \cos \phi \mathrm{~d} \phi \tag{1.5}\\
\mathrm{~d} z & =\mathrm{d} z \tag{1.6}
\end{align*}
$$

So that $\mathrm{d} s^{2}$ becomes,

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}=r^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \mathrm{d} \phi^{2}+\mathrm{d}^{2} z=r^{2} \mathrm{~d} \phi^{2}+\mathrm{d} z^{2} \tag{1.7}
\end{equation*}
$$

Therefor

$$
\begin{equation*}
\mathrm{d} s=\left(r^{2} \mathrm{~d} \phi^{2}+\mathrm{d} z^{2}\right)^{\frac{1}{2}} . \tag{1.8}
\end{equation*}
$$

Part (i) is worth 1 mark. Full marks are not awarded unless it is clear how the answer is obtained.

(ii)

The Cartesian coordinates of points on a cylinder of radius r are given by,

$$
\begin{align*}
& x=r \cos \phi \sin \theta \tag{1.9}\\
& y=r \sin \phi \sin \theta \tag{1.10}\\
& z=r \cos \theta \tag{1.11}
\end{align*}
$$

with $0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$.Thus we have the following differential relations,

$$
\begin{align*}
\mathrm{d} x & =\frac{\partial x}{\partial \phi} \mathrm{~d} \phi+\frac{\partial x}{\partial \theta} \mathrm{~d} \theta=-r \sin \phi \sin \theta \mathrm{~d} \phi+r \cos \phi \cos \theta \mathrm{~d} \theta \tag{1.12}\\
\mathrm{~d} y & =\frac{\partial y}{\partial \phi} \mathrm{~d} \phi+\frac{\partial y}{\partial \theta} \mathrm{~d} \theta=r \cos \phi \sin \theta \mathrm{~d} \phi+r \sin \phi \cos \theta \mathrm{~d} \theta \tag{1.13}\\
\mathrm{~d} z & =\frac{\mathrm{d} z}{\mathrm{~d} \theta} \mathrm{~d} \theta=-r \sin \theta \mathrm{~d} \theta \tag{1.14}
\end{align*}
$$

therefor

$$
\begin{align*}
\mathrm{d} s^{2}= & r^{2}\left[\left(\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi \sin ^{2} \theta\right) \mathrm{d} \phi^{2}+\left(\cos ^{2} \phi \cos ^{2} \theta+\sin ^{2} \phi \cos ^{2} \theta+\sin ^{2} \theta\right) \mathrm{d} \theta^{2}\right. \\
& +2(\sin \phi \cos \phi \sin \theta \cos \theta-\sin \phi \cos \phi \sin \theta \cos \theta) \mathrm{d} \phi \mathrm{~d} \theta] \tag{1.15}\\
= & r^{2}\left(\sin ^{2} \theta \mathrm{~d} \phi^{2}+\mathrm{d} \theta^{2}\right) \tag{1.16}
\end{align*}
$$

So

$$
\begin{equation*}
\mathrm{d} s=r\left(\sin ^{2} \theta \mathrm{~d} \phi^{2}+\mathrm{d} \theta\right)^{\frac{1}{2}} \tag{1.17}
\end{equation*}
$$

Part (ii) is worth 1 mark. Full marks are not awarded unless it is clear how the answer is obtained.

For Cartesian coordinates

$$
\begin{equation*}
\mathrm{d} s=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)^{\frac{1}{2}} . \tag{1.18}
\end{equation*}
$$

Cylindrical coordinates are defined in equations (1.1-1.3) except now r is allowed to vary so that

$$
\begin{align*}
& \mathrm{d} x=\frac{\partial x}{\partial \phi} \mathrm{~d} \phi+\frac{\partial x}{\partial r} \mathrm{~d} r=-r \sin \phi \mathrm{~d} \phi+\cos \phi \mathrm{d} r \tag{1.19}\\
& \mathrm{~d} y=\frac{\partial y}{\partial \phi} \mathrm{~d} \phi+\frac{\partial r}{\partial r} \mathrm{~d} r=r \cos \phi \mathrm{~d} \phi+\sin \phi \mathrm{d} r \tag{1.20}\\
& \mathrm{~d} z=\mathrm{d} z \tag{1.21}
\end{align*}
$$

plugging these into (1.18) and simplifying gives,

$$
\begin{equation*}
\mathrm{d} s=\left[r^{2} \mathrm{~d} \phi^{2}+\mathrm{d} r^{2}+\mathrm{d} z^{2}\right]^{\frac{1}{2}} . \quad \text { (cylindrical coordinates) } \tag{1.22}
\end{equation*}
$$

Spherical coordinates are defined in equations (1.9-1.11). We get the following differential relations

$$
\begin{align*}
& \mathrm{d} x=\frac{\partial x}{\partial \phi} \mathrm{~d} \phi+\frac{\partial x}{\partial \theta} \mathrm{~d} \theta+\frac{\partial x}{\partial r} \mathrm{~d} r=-r \sin \phi \sin \theta \mathrm{~d} \phi+r \cos \phi \cos \theta \mathrm{~d} \theta+\cos \phi \sin \phi \mathrm{d} r \tag{1.23}\\
& \mathrm{~d} y=\frac{\partial y}{\partial \phi} \mathrm{~d} \phi+\frac{\partial y}{\partial \theta} \mathrm{~d} \theta+\frac{\partial y}{\partial r} \mathrm{~d} r=r \cos \phi \sin \theta \mathrm{~d} \phi+r \sin \phi \cos \theta \mathrm{~d} \theta+\sin \phi \sin \theta \mathrm{d} r \tag{1.24}\\
& \mathrm{~d} z=\frac{\partial z}{\partial \theta} \mathrm{~d} \theta+\frac{\partial z}{\partial r} \mathrm{~d} r=-r \sin \theta \mathrm{~d} \theta+\cos \theta \mathrm{d} r \tag{1.25}
\end{align*}
$$

plugging these into (1.18) and simplifying gives,

$$
\begin{equation*}
\mathrm{d} s=\left[r^{2}\left(\sin ^{2} \theta \mathrm{~d} \phi^{2}+\mathrm{d} \theta^{2}\right)+\mathrm{d} r^{2}\right]^{\frac{1}{2}} . \quad \text { (Spherical coordinates) } \tag{1.26}
\end{equation*}
$$

Part (iii) is worth 2 marks. One mark for each of the boxed equations. Full marks are not awarded unless it is clear how the answer is obtained.

Part b)

Consider the motion of a particle which starts at $\left(z_{1}, \phi_{1}\right)$ at time t_{1} and ends at $\left(x_{2}, \phi_{2}\right)$ at time t_{1}, the differentials of the coordinate of the particle may be written

$$
\begin{align*}
\mathrm{d} \phi & =\dot{\phi} \mathrm{d} t \tag{1.27}\\
\mathrm{~d} z & =\dot{z} \mathrm{~d} z . \tag{1.28}
\end{align*}
$$

So that the length of the particles path ℓ is

$$
\begin{equation*}
\ell=\int_{\left(z_{1}, \phi_{1}\right)}^{\left(z_{2}, \phi_{2}\right)} \mathrm{d} s=\int_{t_{1}}^{t_{2}} \mathrm{~d} t \sqrt{R_{0}^{2} \dot{\phi}^{2}+\dot{z}^{2}} \equiv \int_{t_{1}}^{t_{2}} \mathrm{~d} t f(\dot{\phi}, \dot{z}, \phi, z) . \tag{1.29}
\end{equation*}
$$

We can find the paths for which ℓ is minimised using the Euler-Lagrange equations

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial f}{\partial \dot{\phi}}\right)-\frac{\partial f}{\partial \phi}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{R_{0}^{2} \dot{\phi}}{\sqrt{R_{0}^{2} \dot{\phi}^{2}+\dot{z}^{2}}}\right)=0 \tag{1.30}\\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial f}{\partial \dot{z}}\right)-\frac{\partial f}{\partial z}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\dot{z}}{\sqrt{R_{0}^{2} \dot{\phi}^{2}+\dot{z}^{2}}}\right)=0 . \tag{1.31}
\end{align*}
$$

Integrating both of these with respect to time gives

$$
\begin{align*}
\frac{R_{0}^{2} \dot{\phi}}{\sqrt{R_{0}^{2} \dot{\phi}^{2}+\dot{z}^{2}}} & =c_{1} \tag{1.32}\\
\frac{\dot{z}}{\sqrt{R_{0}^{2} \dot{\phi}^{2}+\dot{z}^{2}}} & =c_{2} \tag{1.33}
\end{align*}
$$

where c_{1} and c_{2} are constants of integration. Therefore we have

$$
\begin{equation*}
\frac{\mathrm{d} \phi}{\mathrm{~d} z}=\frac{\mathrm{d} \phi / \mathrm{d} t}{\mathrm{~d} z / \mathrm{d} t}=\frac{c_{1}}{c_{2} R_{0}^{2}} \equiv K \tag{1.34}
\end{equation*}
$$

Integrating with respect to z,

$$
\begin{equation*}
\phi(z)=K z+b \tag{1.35}
\end{equation*}
$$

K and b are integration constants which we see using the end points,

$$
\begin{align*}
\phi_{1} & =K z_{1}+b \tag{1.36}\\
\phi_{2} & =K z_{2}+b \tag{1.37}
\end{align*}
$$

Subtracting equation (1.36) from (1.37) then rearranging gives

$$
\begin{equation*}
K=\frac{\phi_{2}-\phi_{1}}{z_{2}-z_{1}} \tag{1.38}
\end{equation*}
$$

substituting that back into equation (1.37) then rearranging then gives

$$
\begin{equation*}
b=\frac{\phi_{1} z_{2}-\phi_{2} z_{1}}{z_{2}-z_{1}} \tag{1.39}
\end{equation*}
$$

so that putting everything together we have

$$
\begin{equation*}
\phi(z)=\frac{\left(\phi_{2}-\phi_{1}\right) z+\phi_{1} z_{2}-\phi_{2} z_{1}}{z_{2}-z_{1}} \tag{1.40}
\end{equation*}
$$

The expression (1.40) solves the Euler-Lagrange equations with the correct end points but it is not the unique solution as we can replace $\phi_{2} \rightarrow \phi_{2}+2 \pi n$ where n is an integer in the expression (1.40) and still get a solution which has the same end points. So the shortest path is

$$
\begin{equation*}
\phi(z)=\frac{\left(\phi_{2}+2 \phi n-\phi_{1}\right) z+\phi_{1} z_{2}-\phi_{2} z_{1}-2 \pi n z_{1}}{z_{2}-z_{1}} \tag{1.41}
\end{equation*}
$$

where n is found choseing the value which minimises ℓ,

$$
\begin{align*}
\ell= & \int \mathrm{d} s=\int_{\phi_{1}}^{\phi_{2}+2 \pi n} \mathrm{~d} \phi \sqrt{1+\left(\frac{\mathrm{d} z}{\mathrm{~d} \phi}\right)^{2}} \tag{1.42}\\
& =\sqrt{R_{0}^{2}+\left(\frac{z_{2}-z_{1}}{\phi_{2}+2 \pi n-\phi_{1}}\right)^{2}} \int_{\phi_{1}}^{\phi_{2}+2 \pi n} \mathrm{~d} \phi \tag{1.43}\\
& =\sqrt{R_{0}^{2}+\left(\frac{z_{2}-z_{1}}{\phi_{2}+2 \pi n-\phi_{1}}\right)^{2}}\left(\phi_{2}+2 \pi n-\phi_{1}\right) \tag{1.44}\\
& =\sqrt{R_{0}^{2}\left(\phi_{2}+2 \pi n-\phi_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} . \tag{1.45}
\end{align*}
$$

We can see from equation (1.45) that ℓ is minimised when $\left(\phi_{2}-\phi_{1}+2 \pi n\right)^{2}$ is minimised. When $\left|\phi_{2}-\phi_{1}\right|=\pi$ are two possible solutions for n (eg if $\phi_{2}-\phi_{1}=\pi$ the minimum n can be either 0 or -1). This reflects the fact that if the two points are on exactly opposite sides of the cylinder then both the clockwise and anticlockwise paths will have the same length.
1 b) is worth 4 marks: 1 Mark for deriving a functional for the path length (something like equation (1.29)), 1 mark for deriving the appropriate Eular-Lagrange equation(s) (equations (1.30) and (1.31) above), 0.5 marks for showing that the relation between z and ϕ is linear, 0.5 marks for finding the constants (K and b in the above solution) and 1 mark for correctly discussing the uniqueness of the path.

2 Question 2:

In this case the kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2} \tag{2.1}
\end{equation*}
$$

and the total potential energy $V_{\text {tot }}$ is

$$
\begin{equation*}
V_{\mathrm{tot}}=W\left(x_{1}\right)+W\left(x_{2}\right)+V\left(x_{1}-x_{2}\right) \tag{2.2}
\end{equation*}
$$

So the Lagrangian is

$$
\begin{equation*}
L=T-V_{\mathrm{tot}}=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}-W\left(x_{1}\right)-W\left(x_{2}\right)-V\left(x_{1}-x_{2}\right) \tag{2.3}
\end{equation*}
$$

and the equations of motion are,

$$
\begin{align*}
& 0=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{x_{1}}}\right)-\frac{\partial L}{\partial x_{1}}=m_{1} \ddot{x}_{1}+\frac{\mathrm{d} W\left(x_{1}\right)}{\mathrm{d} x_{1}}+\frac{\mathrm{d} V\left(x_{1}-x_{2}\right)}{\mathrm{d}\left(x_{1}-x_{2}\right)} \tag{2.4}\\
& 0=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{x_{2}}}\right)-\frac{\partial L}{\partial x_{2}}=m_{2} \ddot{x}_{2}+\frac{\mathrm{d} W\left(x_{2}\right)}{\mathrm{d} x_{2}}-\frac{\mathrm{d} V\left(x_{1}-x_{2}\right)}{\mathrm{d}\left(x_{1}-x_{2}\right)} \tag{2.5}
\end{align*}
$$

or

$$
\begin{equation*}
m_{1} \ddot{x}_{1}=-\frac{\mathrm{d} W\left(x_{1}\right)}{\mathrm{d} x_{1}}-\frac{\mathrm{d} V\left(x_{1}-x_{2}\right)}{\mathrm{d}\left(x_{1}-x_{2}\right)} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2} \ddot{x}_{2}=-\frac{\mathrm{d} W\left(x_{2}\right)}{\mathrm{d} x_{2}}+\frac{\mathrm{d} V\left(x_{1}-x_{2}\right)}{\mathrm{d}\left(x_{1}-x_{2}\right)} . \tag{2.7}
\end{equation*}
$$

Question 2 is worth 2 marks: 1 for the correct Lagrangian (2.3), 1 mark for the correct equations of motion (2.6) and (2.7).

