
PHYS 306: MOCK EXAM

(composed March 28, 2016)

To be done whenever you like

This is a MOCK exam. The real exam will last 2 hrs and 30 mins. The only material
allowed into the real exam will be pens, pencils, and erasers. No notes of any kind will be
permitted, nor any calculators or other electronic devices.

There are 2 sections. In the real exam, students should answer THREE QUESTIONS
ONLY from section A, and TWO QUESTIONS ONLY from section B. No extra marks will
be given in the real exam for extra questions answered. The questions in section A should
take roughly 15-20 minutes to answer, and the questions in section B roughly 45-50 minutes
to answer.

In doing this mock exam, you should pretend it is a real exam - ie., no cheat sheets, or
books, or anything else to help you.

———————————–

SECTION A

A1: Consider a 1-dimensional potential given as a function of position r by

U(r) =
VP

r12
− VW

r6

Find the value ro of r for which U(r) is a minimum, and expand about ro to get the harmonic
potential in its vicinity. Hence determine the frequency of oscillation about this minimum,
of a mass m.

A2: The gravitational potential of the earth acting on a mass m is V (r) = −GMom/r,
where Mo is the mass of the earth. If the radius of the earth is Ro, find the gravitational
force mg acting on a mass at the earth’s surface in terms of Ro. The escape velocity vo is
defined as that velocity for which the total energy (kinetic plus potential) is zero. Find v0
as a function of Ro and g. Now, assuming that Ro ∼ 6× 103 km, and g ∼ 10 ms−2, find an
approximate answer for vo for the earth (you will not need a calculator for this!!).

A3: Consider a cylindrical solid of uniform density ρo, radius Ro, and length L. Calculate
the rotational energy of the object if it is rotating about the cylindrical axis with angular
velocity ω. Now, suppose the cylinder rolls without slipping down an inclined plane. What
fraction of the total kinetic energy of the cylinder is in its rotational energy?
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A4: A particle of mass M is constrained to move on a vertically oriented circle of radius
Ro - it is also attached by a spring with spring constant k to a point at a distance 2Ro above
the centre of the circle.

Write down the Lagrangian for the mass, and find the equation of motion in the case
where it only moves a small angle away from a position vertically above the centre of the
circle.

A5: The moment of inertia tensor is typically written in component form, in Cartesian
coordinates, for a continuous solid with mass density distribution ρ(r), as

Iαβ =

∫
d3rρ(r)(r2δαβ − rαrβ)

Write out the components of Iαβ in the form of a 3× 3 matrix.

A6: A mass M is attached to a point by a spring of spring constant k, and is otherwise
from to move without friction in a horizontal plane.

Write down the Lagrangian for the motion of the mass in the plane, and derive the
equation of motion for the radial coordinate r (the distance from the centre).

——————————————-

SECTION B

B1: CENTRAL FIELD MOTION: We consider a mass m moving in a central force
potential V (r), where r is the radial coordinate of the vector r = (r, ϕ), and we assume
motion in the (r, ϕ) plane.

(i) Write down an expression for the total energy E of the particle, in terms of ṙ, ϕ̇, and r.
Then rewrite this in terms of ṙ and r only, by using the conservation of angular momentum
L about the central point at r = 0. Since E is also conserved, you should now also be able
to write an expression - an equation of motion - for ṙ in terms of E,L, r,m and the potential
V (r).

(ii) To solve the equation of motion, it is convenient to change variables to y = 1/r.
Rewrite ṙ in terms of dy/dϕ and the angular momentum L, using ṙ = ϕ̇(dr/dϕ). Then
substitute this into the equation of motion for ṙ you derived above, and show that the
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variable y(ϕ) obeys the following equation of motion:

y2 +

(
dy

dϕ

)2

=
2m

L2
(E − V (r))

no matter what the potential V (r) may be.

(iii) Let us now assume that the potential V (r) = Vor
2/2. Draw a graph, as a function

of r, of the effective radial potential that results from summing V (r) and the centrifugal
potential. Then, by minimizing this potential as a function of r, for some given angular
momentum L, find the radius ro of the orbit for which the system exhibits circular motion.
What is the period of this motion?

(iv) Finally, by examining the form of the effective radial potential around ro, derive
the period of the small radial oscillations about a circular orbit, when the energy E is very
slightly above the minimum energy for a given L.

B2: COUPLED OSCILLATORS: We consider a pair of LC circuits, coupled by a
mutual capacitance. The Lagrangian for this can be written down by noting that the energy
in a current flowing through an inductance L is LI2/2, where I = dQ/dt is the current; the
energy stored in a capacitance C is Q2/2C; and the energy in the mutual capacitance C12

between two LC circuits is Q1Q2/C12, where Q1, Q2 are the charges on the 2 capacitors in
each of the 2 circuits.

(i) Write down an expression for the Lagrangian of the total system, in terms of the
Qj(t) and Q̇j(t), where j = 1, 2.

(ii) Find the equations of motion of this coupled LC circuit, and solve them assuming
that the initial currents in the system are zero, and that the initial charges are Q̄1, Q̄2.

(iii) Now suppose we insert resistors with resistances R1 and R2 respectively into the 2
LC circuits. Using Ohm’s law, that the voltage ”force” across a resistor is V = IR, find the
new equations of motion for the coupled circuits.

(iv) Now suppose that we let the resistance R2 → ∞. Show from the equations of motion
that the current in circuit 2 is then zero, so that the charge Q2 is frozen to be Q̄2 for all
time. Then from this write down the equation of motion for the charge Q1(t) in the first
circuit, and solve it using the same initial conditions as you had in part (ii) above.
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B3: ROTATING SPACE STATION: A large space station is approximately de-
scribed as having 2 parts: a long massive cylindrical spindle of length Lo, mass Mo, and
negligible radius; and a large circular ring concentric with the centre of mass of the spindle
(and joined to it by ”spokes”), of radius Ro, and mass Mo; we assume that m ≪ Mo, and
that the thickness of the ring is also negligible.

(i) Find the 3 principal moments of inertia, about the centre of mass of the system, as
functions of Mo,m, Lo, and Ro.

(ii) Derive the centrifugal force acting on some object of very small mass m situated
on the ring, if the space station is rotating about the cylindrical axis at angular velocity
ω. Then, assuming that the radius Ro = 100 m, find out what ω must be for the mass to
feel a centrifugal force mg, where g = 10ms−2 is the acceleration experienced at the earth’s
surface.

(iii) Suppose now that we launch a cylindrical spaceship of mass ms, and radius ro from
the centre of the central spindle, along the spindle axis with acceleration a; we assume the
spaceship’s axis is also aligned along the spindle axis, and that it is already spinning about
this axis with angular velocity ω.

Describe quantitatively the path that a spot of paint on the outer cylindrical surface of
the spacecraft would appear to follow as seen by an outside inertial observer; and show a
diagram of this path. At what velocity would the spacecraft be traveling as it left the end
of the spindle?

(iv) Inside the spacecraft, a ball is thrown outwards by one of the astronauts radially
towards the outer surface of the spacecraft, at a velocity v. Find the path that this ball would
appear to follow (a) for an observer inside the spacecraft, and (b) for an inertial observer
outside the craft.

B4. TIDAL FORCES Consider a long thin rod, of mass density πr2oρ per unit length,
and total length lo; we assume that ro is negligible. It is situated at a distance Ro from
the centre of the earth, and the rod axis is oriented at an angle θ with respect to the radial
vector from the centre of the earth out to the rod.

(i) The different parts of the rod are attracted differently to the earth, depending on
their distance from the earth - the energy of the rod then depends on its orientation angle θ.

Assuming the gravitational potential energy of a unit point mass at a distance r from
the earth is −GMo/r, where Mo is the mass of the earth, calculate the total potential energy
of the rod as a function of the angle θ, by integrating along the rod, and show that is given
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approximately, when lo ≪ Ro, by

V (Ro, θ) ∼ −G
Momo

Ro

[
1 +

l2o
6R2

o

cos2 θ

]
where mo is the mass of the rod (Hint: expand in powers of lo/Ro).

(ii) If the rod is rotating, it will have a rotational kinetic energy proportional to θ̇2. Cal-
culate this rotational kinetic energy, and hence write down the Lagrangian for the rotational
motion of the rod.

(iii) Find the frequency of small oscillations of the rod about the vertical position θ = 0
(or θ = π).

(iv) Assume now that the rod is moving in a circular orbit about the earth. Using any
method you like, derive the period of revolution of the rod around the earth. For what value
of Ro will this period match the period of angular oscillations of the rod?

END of MOCK EXAM
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