PHYS 306: HOMEWORK ASSIGNMENT No. 5: MOTION IN NON-INERTIAL FRAMES

(March 2nd, 2017)
HOMEWORK DUE: Friday, MARCH 10th, 2017
To be handed in during class- Late Homework will not be accepted

QUESTION (1) FORCES IN A ROTATING CIRCULAR FRAME: We consider an infinitesimally thick circular wire oriented vertically (ie., in a flat plane which is vertical). The circle has radius R_{o}, and is spinning about a vertical axis through its centre at a constant angular velocity ω_{o}.
$\mathbf{1}(\mathbf{a})$ Suppose a small mass m_{o} is constrained to move without friction on the wire (ie., at radius R_{o} from the centre). Find the Lagrangian for the point mass (i) in the non-rotating frame, and (ii) in the frame rotating with the circle.
$\mathbf{1}(\mathbf{b})$ Now find the equation of motion for the mass m_{o}, and use it to find (i) the equilibrium position of the mass on the circle, and (ii) the frequency of small oscillations of the mass around this equilibrium point.

QUESTION (2) MOTION ON A ROTATING ROD: A small mass m_{o} is allowed to slide without friction on a very long rigid rod. The rod is rotating with constant angular velocity ω_{o} in a horizontal plane, with one end fixed at the origin \mathcal{O}.

2(a) Find the equation of motion for the distance $r(t)$ of the mass on the rod, from the centre of rotation at \mathcal{O}.
$\mathbf{2 (b)}$ Suppose that at time $t=0$, the radial velocity $d r / d t$ of the mass is zero. What is the subsequent motion of the mass?

