PHYS 306: HOMEWORK ASSIGNMENT No. 4: ORBITS IN GRAVITATIONAL FIELDS

(Feb 7th, 2017)

HOMEWORK DUE: FRIDAY, FEB 17th, 2017
 To be handed in during class- Late Homework will not be accepted

QUESTION (1): We consider some of the different orbits around a central potential $V(r)=-V_{o} / r$.
1(a) Consider first the elliptic orbit, depicted in Fig. 1, whose trigonometric form is $r(\phi)=r_{o} /(1+e \cos \phi)$, with eccentricity e such that $0<e<1$. Show that this form can be rewritten in Cartesian coordinates as

$$
\begin{equation*}
\frac{(x+a e)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{0.1}
\end{equation*}
$$

where the semimajor and semi-minor axes a and b are given in terms of $r_{o}=L^{2} / m V_{o}$, the "latus rectum", by $a=r_{o} /\left(1-e^{2}\right)$ and $b=r_{o} /\left(1-e^{2}\right)^{1 / 2}$ (and we note that $r_{\text {min }}$, the perigee distance, is $r_{o} /(1+e)=a(1-e)$).
$\mathbf{1 (b)}$ Now show that when $e=1$, we can write the curve as a parabola satisfying the equation

$$
\begin{equation*}
2 r_{o} x+y^{2}=r_{o}^{2} \tag{0.2}
\end{equation*}
$$

QUESTION (2) Now we are going to consider the radial equation for a non-rotating black hole - the remarkable thing is how much we can learn using only elementary analysis.
(a) In General Relativity it is found that the radial equation of an object orbiting a non-rotating black hole has the form

$$
\begin{equation*}
\dot{r}^{2}+\left(1-2 V_{o} / r\right)\left[\frac{l^{2}}{r^{2}}+1\right]=E^{2} \tag{0.3}
\end{equation*}
$$

where r is the radial coordinate, l is the angular momentum, and E is the total energy; the potential $V_{o}=G M_{o}$, where M_{o} is the mass of the black hole. Show, using the standard substitution $u=1 / r$, and rewriting \dot{r} in terms of $\dot{\phi}$ and $u^{\prime}=d u / d \phi$, that we can write a differential equation for $u(\phi)$ of form

$$
\begin{equation*}
u^{\prime \prime}+u-\frac{V_{o}}{l^{2}}-3 V_{o} u^{2}=0 \tag{0.4}
\end{equation*}
$$

(b) Now we employ a common manouevre in the theory of differential equations. Suppose that r is large, so that u is small. Then we treat the term $\propto u^{2}$ in the General Relativistic differential eqtn. in (0.4) for $u(\phi)$ as a perturbation on the differential equation obtained when this term is absent - for which the solution is the the known "Newtonian solution". Substitute this Newtonian solution for $u(\phi)$ into equation (0.4), and thereby write down a new form for this differential equation in terms of the eccentricity e and $\cos \left(\phi-\phi_{o}\right)$, where ϕ_{o} is the angle of periastron.
(c) We can drop the term $\propto \cos ^{2}\left(\phi-\phi_{o}\right)$, and also the term equal to $-3 V_{o}^{3} / l^{4}$, from the equation you derived in (b). Having done this, you will find a resulting simplified differential equation which looks like that of an oscillator subject to a periodic driving force $\propto \cos \left(\phi-\phi_{o}\right)$ (remember, we are looking at u as a function of ϕ). Find the solution to this differential equation.

Fig. 1

