PHYS 306: HOMEWORK ASSIGNMENT No. 1: LAGRANGIANS

(Jan. 11th, 2017)

HOMEWORK DUE: WEDNESDAY, JAN 18th, 2017

To be handed in during class- Late Homework will not be accepted

QUESTION (1): The infinitesimal "interval" or distance $d s$ between points on a 2-dimensional plane is given by $d s^{2}=d x^{2}+d y^{2}$, so that $d s=\left(d x^{2}+d y^{2}\right)^{1 / 2}$.

1(a) Give the expression for the infinitesimal distance on (i) the surface of a cylinder of radius r, in terms of cylindrical coordinates (ii) the surface of a sphere of radius r, in terms of spherical coordinates; and then (iii) write the distance in 3-dimensional Euclidean space in terms of Cartesian, cylindrical, and spherical coordinates.
$\mathbf{1 (b)}$ For a cylinder of radius R_{o}, find the equation as a function of z, the axial coordinate, for the shortest path on the cylinder between points $\left(z_{1}, \phi_{1}\right)$ and $\left(z_{2}, \phi_{2}\right)$. When does this problem have more than one solution?

QUESTION (2) Here we will look at how the Lagrangian and the equations of motion are found for a specific system.

Consider a situation where 2 masses, with masses m_{1} and m_{2}, and coordinates x_{1} and x_{2} respectively, move along the x-axis without friction. However there is a potential energy $W(x)$ acting on each of them, as well as a potential energy $V\left(x_{1}-x_{2}\right)$ acting between them. Find the Lagrangian of the system, and then find Lagrange's equations of motion for the 2 masses.

