
Question 1: Spherical Pendulum

Consider a two-dimensional pendulum of length l with mass M at its end. It is easiest to use spherical
coordinates centered at the pivot since the magnitude of the position vector is constant: |~r| =

√
(lr̂) · (lr̂) =√

l2(r̂ · r̂) = l. In other words, the mass is restricted to move along the surface of sphere of radius r = l that
is centered on the pivot. The motion of the pendulum can therefore be described by the polar angle θ, the
azimuthal angle φ, and their rates of change.

(a) The Lagrangian for a spherical pendulum

Let’s assume that the mass is on “bottom half” of the sphere, so that the mass has a Cartesian coordinate
z = −l cos θ. Since gravity is the only external, non-constraint force acting on the mass, with potential
energy U = Mgz = −Mgl cos θ, the Lagrangian (L) can be first written as:

L = T − U =
1

2
M |~v|2 +Mgl cos θ

In spherical coordinates, ~v = ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂, and for the problem under consideration we note that
ṙ = l̇ = 0. So we can write L as an explicit function of the spherical coordinates,

L =
1

2
M
(
l2θ̇2 + l2φ̇2 sin2 θ

)
+Mgl cos θ (1)

There are two equations of motion for the spherical pendulum, since Lin Equation 1 is a function of both θ
and φ; we therefore use the Euler-Lagrange equation for both coordinates to obtain them. For θ and φ,

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0 =⇒ Ml2θ̈ −Ml2θ̇2 sin θ cos θ +Mgl sin θ = 0 (2)

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= 0 =⇒ d

dt

(
Ml2φ̇ sin2 θ

)
= 0 (3)

Equation 3 suggests that the quantity Ml2φ̇ sin2 θ is a constant in time. This quantity has the same form
as the z-component of the angular momentum vector for the mass (Lz), so Equation 3 states that angular
momentum is conserved in the z direction for our spherical pendulum.

(b) Energy in terms of θ and Lz

For Lagrangians that don’t explicitly depend on time, and for potentials that only depend on the coordinates
(and not explicitly in their rates of change), the total mechanical energy E = T + U is another constant of
the motion. Equation 1 satisfies both of these conditions, so E is constant for the spherical pendulum. We
can eliminate the φ̇ term in T since, according to Equation 3, Lz = Ml2φ̇ sin2 θ is constant in time. So the
expression for E becomes

E =
1

2
M
(
l2θ̇2 + l2φ̇2 sin2 θ

)
−Mgl cos θ

=
1

2
M

[
l2θ̇2 + l2

(
Lz

Ml2 sin2 θ

)2

sin2 θ

]
−Mgl cos θ

=
1

2
Ml2θ̇2 +

L2
z

Ml2 sin2 θ
−Mgl cos θ = E (4)
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Notice that E was re-written as a function of only one coordinate (θ); one can therefore talk about an
equivalent one-body problem, where E = Teff + Ueff , Teff = Ml2θ̇2/2, and

Ueff =
L2
z

Ml2 sin2 θ
−Mgl cos θ (5)

Given the one-body form of Equation 4, we can technically solve for the solution for θ as a function of time
(or vice versa). Noting that θ̇ = dθ/dt and solving for it in Equation 4, we get

dθ

dt
=

√
2[E − Ueff(θ)]

Ml2
=⇒ dt =

√
Ml

dθ√
2[E − Ueff(θ)]

t− t0 =

∫ t

t0

dt = l
√
M

∫ θ

θ0

dθ√
2[E − Ueff(θ)]

(6)

For the full solution of the spherical pendulum, we also need to find the solution for φ. This can be done
using the integrated form of Equation 3, Lz = Ml2φ̇ sin2 θ, and using the chain rule of advanced calculus to
put the eventual integral in terms of θ. In the form of equations, this gives

Lz

Ml2 sin2 θ
=
dφ

dt

=
dφ

dθ

dθ

dt

=
dφ

dθ

√
2[E − Ueff(θ)]

Ml2

and, solving for dφ/dθ, we finally get

dφ

dθ
=

Lz

l
√
M

1

sin2 θ
√

2[E − Ueff(θ)]
=⇒ φ− φ0 =

∫ φ

φ0

dφ =
Lz

l
√

2M

∫ θ

θ0

dθ

sin2 θ
√
E − Ueff(θ)

(7)

(c) Max and min values of θ

At the maximum and minimum values of θ, the mass has no (effective) kinetic energy (i.e. θ̇ = 0) and so
the total mechanical energy at those points is equal to the effective potential energy:

E = Ueff

=
L2
z

2Ml2 sin2 θ
−mgl cos θ

=
L2
z

2Ml2(1− cos2 θ)
−mgl cos θ (8)

We can then find an algebraic (cubic) equation for the maximum and minimum values of cos θ by solving
for it in Equation 8:

Mgl(cos3 θ − cos θ) + E(cos2 θ − 1) +
L2
z

2Ml2
= 0 (9)
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Question 2: Radial Oscillations

In the classic two-body problem, the total mechanical energy for a pair of point-like particles with an
interaction potential V (r) can be re-written to reflect an effective one-body problem when using constants of
the motion (i.e. conservation laws), as well as a suitable reference frame and coordinate system. Therefore,
instead of describing the motion of two particles with masses m1 and m2 undergoing motion dictated by the
potential V (r), one can instead talk about a particle of reduced mass µ = m1m2/(m1 + m2) moving in an
“effective potential” Veff , which has the form

Veff = V (r) +
L2

2µ2r2
(10)

and r is the radial coordinate of the particle with mass µ measured relative to the center of field. Note
that Equation 10 yields the potential, which is the potential energy per unit (reduced) mass, and that the
potential energy can be computed to be Ueff = µVeff .

For circular orbits, r = r0 = constant in time, and for general central-force problems in Newtonian mechanics
the orbital angular momentum (L) is a conserved quantity1 of the motion: L = µr2

0φ̇
2. The latter equation

can be solved to find the period of orbital motion,

φ̇ =
dφ

dt
=

L

µr2
0

=⇒
∫ 2π

0

dφ = 2π =

∫ T

0

L

µr2
0

dt =
L

µr2
0

T

and finally can be put in terms of r0 and L,

T = 2π
µr2

0

L
(11)

(a) Newtonian potential for inverse-square-law force

Consider the case when the interaction potential V (r) = −V0/r. The effective potential can be explicitly
written as a function of r,

Veff = −V0

r
+

L2

2µ2r2
. (12)

A circular orbit corresponds to a system with total mechanical energy E that is equal to Ueff at all times. In
other words, a circular orbit has a value of r0 that corresponds to the minimum value of Ueff (or, equivalently,
Veff), which can be found to be

dVeff

dr

∣∣∣∣
r=r0

=
V0

r2
0

− L2

µ2r3
0

= 0 =⇒ r0 =
L2

µ2V0
(13)

We can find the orbital period for this potential by combining the general formula for T (Equation 11) with
Equation 13 to eliminate L; this is most easily done by finding T 2:

T 2 = 4π2µ
2r4

0

L2
= 4π2 µ2r4

0

(r0µ2V0)
= 4π2 r

3
0

V0
(14)

If V0 = GM , where G is Newton’s gravitational constant and M = m1 +m2 is the total (gravitational) mass
of the system, then Equation 14 is Kepler’s third law of planetary motion.

1These equations are written for an orbit with its plane embedded in the x− y Cartesian plane, so that θ = π/2 is constant
in time.
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For small perturbations in r relative to r0, we can express Veff as a Taylor expansion in r:

Veff(r) ≈ Veff(r0) +
dVeff

dr

∣∣∣∣
r=r0

(r − r0) +
1

2

d2Veff

dr2

∣∣∣∣
r=r0

(r − r0)2 + . . . (15)

where the first derivative of Veff is equal to 0 by definition. We are therefore left with a constant term
and a quadratic term in r for the Taylor-expanded Veff . This has an equivalent form to the potential for a
simple harmonic oscillator in one dimension, since the constant term will vanish when we compute the Euler-
Lagrange equation of motion for r. We can therefore find the frequency of oscillations in r by computing
the second derivative in Veff ,

d2Veff

dr2
= −2

V0

r3
0

+ 3
L2

µ2r4
0

= −2
V0

r3
0

+ 3
(r0µ

2V0)

µ2r4
0

= −2
V0

r3
0

+ 3
V0

r3
0

=
V0

r3
0

(16)

where the frequency (ω) can be finally found to be:

ω =

√
V0

r3
0

(17)

We can compare this to the frequency of orbital motion (Ω) by noting that Ω = 2π/T , and from Equation
14 this can be found to be:

Ω =

√
V0

r3
0

= ω (18)

So, in short, the orbital and oscillation frequencies are equal for the case where the interaction potential
corresponds to an inverse-square-law force.

(b) Two-dimensional harmonic potential

Now consider the case when the interaction potential V (r) = kr2/2, where k is positive constant. The
effective potential can be explicitly written as a function of r,

Veff =
1

2
kr2 +

L2

2µ2r2
. (19)

We can now apply the same procedures as done for part (a) of this problem to find the various quantities of
interest. For starters, we can compute the radius of a circular orbit for this effective potential by setting the
first derivative of Equation 19 to 0:

dVeff

dr

∣∣∣∣
r=r0

= kr0 −
L2

µ2r3
0

= 0 =⇒ r0 =

(
L2

µ2k

)1/4

(20)

We can combine the above result with the general relation for the orbital period T and orbital frequency Ω
to find them in terms of r0 and k:

T 2 =
4π2µ2r4

0

L2
=

4π2µ2r4
0

kµ2r4
0

=
4π2

k
=⇒ Ω =

2π

T
=
√
k (21)

Using Equation 15, we can find the solution for small oscillations in r about r0 by computing the second
derivative of Veff with respect to r:
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d2Veff

dr2

∣∣∣∣
r=r0

= k + 3
L2

µ2r4
0

= k + 3
kµ2r4

0

µ2r4
0

= 4k (22)

and so the frequency of oscillations is found to be:

ω = 2
√
k = 2Ω (23)
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