1. (4)

We we the deviation away from equilibrium as dour coordinate x_{1}, x_{2}, x_{3}

$$
\begin{aligned}
& T=\frac{1}{2} m_{2} \dot{x}_{1}^{2}+\frac{1}{2} M_{1} \dot{x}_{2}^{2}+\frac{1}{2} m_{2} \dot{x}_{3}^{2} \\
& V=\frac{1}{2} k\left(x_{1}-x_{2}\right)^{2}+\frac{1}{2} k\left(x_{2}-x_{3}\right)^{2} \\
& L=T-V \\
& E \cdot O \cdot M \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{1}}\right)=\frac{\partial L}{\partial x_{1}} \Rightarrow M_{2} \ddot{x}_{1}=-k\left(x_{1}-x_{2}\right) \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial x_{2}}\right)=\frac{\partial L}{\partial x_{2}} \Rightarrow m_{1} \ddot{x}_{2}=-k\left(2 x_{2}-x_{1}-x_{3}\right) \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{3}}\right)=\frac{\partial L}{\partial x_{3}} \Rightarrow M_{2} \ddot{x}_{3}=-k\left(x_{3}-x_{2}\right)
\end{aligned}
$$

The equation for eigentrequencies is
(4)

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
m_{2} \omega^{2}-k & +k & 0 \\
k & m_{1} \omega^{2}-2 k & k \\
0 & k & m_{2} \omega^{2}-k
\end{array}\right)=0 \\
& m_{i} m_{2}^{2} \omega^{6}-2 k\left(m_{1} m 2+m_{2}^{2}\right)^{\omega^{4}}+k^{2}\left(2 m_{2}+m_{1}\right) \omega=0
\end{aligned}
$$

the solution is

$$
w^{2}=\left\{\begin{array}{l}
\frac{k}{m_{2}} \\
\frac{m_{1}+2 m_{2}}{m_{1} m_{2}} k \\
0
\end{array}\right.
$$

The eigenfrequeaties are
(4) $\omega_{1,2,3}=\sqrt{\frac{k}{m_{2}}}, \sqrt{\frac{m_{1}+2 m_{2}}{m_{1} m_{2}} k}$,
b). for $w_{1}=\sqrt{\frac{k}{m_{2}}}$, the matrix becomes

$$
\left(\begin{array}{ccc}
0 & k & 0 \\
k & \left(\frac{m_{1}}{m_{2}}-2\right) k & k \\
0 & k & 0
\end{array}\right)
$$

the eigen modes are $\left(\begin{array}{c}01 \\ 0 \\ 0 \\ 0\end{array}\right)$

two outer nolembles move towards each other.
for $\omega_{2}=\sqrt{\frac{m_{1}+2 m_{2}}{m_{1} m_{2}} K}$, the matrix become

$$
\left(\begin{array}{ccc}
\frac{2 m_{2}}{m_{1}} k & k & 0 \\
k & \frac{m_{1}}{m_{2}} k & k \\
0 & k & \frac{2 m_{2}}{m_{1}} k
\end{array}\right)
$$

the eigen modes are

$$
\left(\begin{array}{c}
-\frac{m_{1}}{2 m_{2}} \\
1 \\
-\frac{m_{1}}{2 m_{2}}
\end{array}\right)
$$

The movement is as illustrated
for $\omega_{3}=0$

$$
\left(\begin{array}{ccc}
-k & +k & 0 \\
k & -2 k & k \\
0 & k & -k
\end{array}\right)
$$

(4) the eigennodes are

$$
\left(\begin{array}{l}
1 \\
01 \\
1
\end{array}\right)
$$

The movement is

All three masses move together
C) The friction is added to the spring. the now E.O.M is

$$
\begin{aligned}
& \ddot{x}_{1}=-\frac{k}{m_{2}}\left(x_{1}-x_{2}\right)-\frac{\eta}{m_{2}}\left(\dot{x}_{1}-\dot{x}_{2}\right) \\
& \ddot{x}_{2}=-\frac{k}{m_{1}}\left(2 x_{2}-x_{1}-x_{3}\right)-\frac{\eta}{m_{1}}\left(2 \dot{x}_{2}^{\prime}-\dot{x}_{1}-x_{3}^{\prime}\right) \\
& \ddot{x}_{3}=-\frac{k}{m_{2}}\left(\dot{x}_{3}-x_{2}\right)-\frac{\eta}{m_{2}}\left(x_{3}^{\prime}-\dot{x}_{2}\right)
\end{aligned}
$$

assuming our ddeigen modes are X^{\prime} we have.

$$
\ddot{X}=A X
$$

and $T X^{\prime}=X$ diagonalize A.
a.k.a.

$$
\begin{aligned}
\ddot{X}^{\prime} & =T^{-1} A T X^{\prime} \\
& =\left(\begin{array}{lll}
-w_{1}^{2} & & \\
& -w_{2}^{2} & \\
& & -w_{3}^{2}
\end{array}\right) X^{\prime}
\end{aligned}
$$

for the new E.O.M. since the friction is a ssociaith with spring. we have

$$
\dot{x}=A X+\frac{\eta}{k} A \dot{x}
$$

So $T X^{\prime}=X$ still dingondiel the equation.

$$
\ddot{X}^{\prime}=\left(\begin{array}{lll}
-w_{1}^{2} & & \\
& -w_{2}^{2} & \\
& & -w_{3}^{2}
\end{array}\right) \dot{x}^{\prime}+\frac{\eta}{k}\left(\begin{array}{cc}
-w_{1}^{2} & \\
& -w_{2}^{2} \\
& -w_{3}^{2}
\end{array}\right) \dot{x}^{\prime}
$$

So all 3 modes still remain decoupled.
2. The equation of motion with external force is

$$
\ddot{x}=-\omega_{0}^{2} x-\eta \dot{x}+\frac{F(t)}{m} \quad\left(\begin{array}{cc}
^{} & \gamma \\
\eta_{\text {for all }}^{\text {bellow }}
\end{array}\right)
$$

We define the fourier transform of the external force is

$$
\begin{aligned}
& F(\Omega)=\int_{-\infty}^{+\infty} F(t) e^{-i \Omega t} d t \\
& \text { and } F(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\Omega) e^{i \Omega t} d \Omega
\end{aligned}
$$

Fourier Transform the E.O.M. we have

$$
X(\Omega)=\frac{1}{\omega_{0}^{2}-\Omega^{2}+i \eta \Omega} \frac{E(\Omega)}{m}
$$

Inverse transform $X(\Omega)$ gives a particular solution to E.O.M.

- To do the inverse Foxier transform

$$
\begin{aligned}
X(t) & =\frac{1}{2 \pi m} \int_{-\infty}^{+\infty} \frac{1}{\omega_{0}^{2}-\Omega^{2}+i \eta \Omega} F(\Omega) e^{i \Omega t} d \Omega \\
& =\frac{1}{2 \pi m} \int_{-\infty}^{+\infty} d \Omega \int_{-\infty}^{+\infty} d t^{\prime} \frac{1}{\omega_{0}^{2}-\Omega^{2}+i \eta \Omega^{\prime}} F(t) e^{-i \Omega t^{\prime}} e^{i \Omega t} \\
& =\frac{1}{2 \pi m} \int_{-\infty}^{+\infty} d \Omega \int_{-\infty}^{+\infty} d t^{\prime} \frac{F\left(t^{\prime}\right) e^{i \infty\left(t-t^{\prime}\right)}}{\omega_{0}^{2}-\Omega^{2}+i \eta \Omega}
\end{aligned}
$$

We do the integral over $d \Omega$ first

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} d \Omega \frac{e^{i \Omega\left(t-t^{\prime}\right)}}{w_{0}^{2}-\Omega^{2}+i \eta \Omega} \\
&= \int_{-\infty}^{+\infty} d \Omega \frac{-e^{i \Omega\left(t-t^{\prime}\right)}}{\left(\Omega-\Omega_{1}\right)\left(\Omega-\Omega_{\nu}\right)} \\
& \Omega_{1,2}=\frac{i \eta}{2} \pm \sqrt{w_{0}^{2}-\frac{\eta^{2}}{4}}
\end{aligned}
$$

if $4 \omega_{0}^{2} \geqslant \eta^{2}$, then both $\Omega_{1,2}$ are in the upper half plane complex plane.

so the integral is only nonzero when $t \rightarrow t^{\prime}$.
if $t>t^{\prime}$., we can use residue theorem to get.

$$
\begin{aligned}
& \int_{-\infty}^{t \infty} d \Omega \\
&=\frac{-e^{i \Omega\left(t-t^{\prime}\right)}}{\left(\Omega-\Omega_{1}\right)\left(\Omega-\Omega_{2}\right)} \\
&= \frac{2 \pi i}{\Omega_{1}-\Omega_{2}}\left(e^{i \Omega_{1}\left(t-t^{\prime}\right)}-e^{-i \Omega_{2}\left(t-t^{\prime}\right)}\right) \\
&= \frac{2 \pi}{\omega_{0}^{2}-\frac{\eta^{2}}{4}} e^{-\frac{\eta}{2}\left(t-t^{\prime}\right)} \sin \left(\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}\left(t-t^{\prime}\right)\right)
\end{aligned}
$$

$$
\text { So. } \begin{aligned}
x(t)= & \frac{1}{2 \pi m} \int_{-\infty}^{+\infty} d t^{\prime} \frac{\theta\left(t-t^{\prime}\right) \cdot 2 \pi}{\sqrt{w_{0}^{2}-\frac{\eta^{2}}{4}}} e^{-\frac{\eta}{2}\left(t-t^{\prime}\right)} \\
& \sin \left(\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}\left(t-t^{\prime}\right)\right) F\left(t^{\prime}\right) \\
= & \frac{1}{\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}} \int_{-\infty}^{0 t} d t^{\prime} e^{-\frac{\eta}{2}\left(t-t^{\prime}\right)} \sin \left(\sqrt{\left.\omega_{0}^{2}-\frac{\eta^{2}}{4}\left(t-t^{\prime}\right)\right)}\right.
\end{aligned}
$$

$$
F\left(t^{\prime}\right)
$$

We know that $F(t)=\theta(t) F_{0} e^{-A t} \cos \omega t$
So $x_{5}(t)=\frac{1}{m \sqrt{w_{0}^{2}-\frac{\eta^{2}}{4}}} \int_{0}^{t} d t^{\prime} e^{-\frac{1}{2}\left(t-t^{\prime}\right)} \sin \left(\sqrt{w_{0}^{2}-\frac{l^{2}}{4}}\left(t-t^{\prime}\right)\right)$

$$
\cdot e^{-A t^{\prime}} \cos \omega t^{\prime}
$$

$$
\begin{aligned}
& =\frac{e^{-\frac{\eta}{2} t}}{m \cdot 2 \sqrt{\omega_{0}^{2}-\eta^{2}}}\left[\frac{\left(\frac{\eta}{2}-A\right)\left[\left(e^{\frac{\eta}{2}-A} \sin \omega t-\sin \left(\overline{\omega_{0}^{2}-\frac{\eta^{2}}{4}} t\right)\right]\right.}{\left(\frac{\eta}{2}-A\right)^{2}+\left(\omega_{0}-\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}\right)^{2}}\right. \\
& +\frac{\left(\omega-\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}\right) \cos \left(\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}} t\right)}{\left(\frac{n}{2}-A\right)^{2}+\left(\omega-\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}\right)^{2}} \\
& \\
& \left(\frac{\eta}{2}-A\right)\left[e^{\frac{\eta}{2}-A} \sin \omega t+\sin \left(\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}} t\right)\right]+\left(\omega+\sqrt{\omega_{0}^{2}-\frac{n^{2}}{2}}\right) \cos \left(\sqrt{\left(\omega_{0}^{2} \frac{n}{4}\right)}\right. \\
& \left(\frac{\eta}{2}-A\right)^{2}+\left(\omega+\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}}\right)^{2}
\end{aligned}
$$

which is the special solution
the horrogeneons solution

$$
\text { is } x_{g}(t)=C_{0} e^{-\frac{1}{2} t} \cos \left(\sqrt{\omega_{0}^{2}-\frac{1}{4}} t+\varphi\right)
$$

C, Y are constant

The sollution is

$$
x_{0}(t)=x_{s}(t)+x_{g}(t)
$$

