PHYS 306: HOMEWORK ASSIGNMENT No. 2: TWO COUPLED OSCILLATORS

(Jan. 18th, 2016)
HOMEWORK DUE: MONDAY, JAN 25th, 2016
To be handed in during class- Late Homework will not be accepted

QUESTION (1): COUPLED SPRINGS We consider a system of "coupled springs", in which 2 masses M_{1} and M_{2} are free to move in a vertical plane, and hang from springs with spring constants k_{1} and k_{2} respectively (see Fig. 1); they are also connected by a 3rd spring of spring constant k_{3}.

1(a) Find the Lagrangian for this system, using coordinates of your own choosing, and show how it can be reduced to the form of a pair of simple harmonic oscillators with a simple bilinear coupling between these oscillators.
$\mathbf{1 (b)}$ Solve for the 2 eigenfrequencies of the system, and plot the way these 2 eigenfrequencies vary as a function of the coupling strength between the oscillators (noting as above that k_{1}, k_{2}, M_{1}, and M_{2} are arbitrary.

QUESTION (2): 2-D OSCILLATOR We consider a 2-dimensional oscillator, with coordinates q_{1} and q_{2}, and with a Lagrangian given by

$$
\begin{equation*}
L\left(q_{1}, q_{2} ; \dot{q}_{1}, \dot{q}_{2}\right)=\frac{1}{2}\left[\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)-\left(\omega_{1}^{2} q_{1}^{2}+\omega_{2}^{2} q_{2}^{2}\right)-g q_{1} q_{2}\right] \tag{0.1}
\end{equation*}
$$

$\mathbf{2 (a)}$ Find the equations of motion of the 2 coordinates, and solve for the 2 eigenfrequencies of the system.
2(b) Now plot a contour map of the potential in which this 2-oscillator moves; and also plot a graph of the way in which the 2 eigenfrequencies vary as a function of the coupling strength g between the 2 coordinates.

NB: The Figure is on the following page

END of 2ND HOMEWORK ASSIGNMENT

Fig. 1

