PHYS 306: HOMEWORK ASSIGNMENT No. 6: RIGID BODY ROTATION

(March 22nd, 2016)

HOMEWORK DUE: Friday, APRIL 1ST, 2016
 To be handed in during class- Late Homework will not be accepted

QUESTION (1) MOMENTS OF INERTIA: This is just to make sure you all know how to calculate moments of inertia.

1(a) Consider a hollow spherical shell with internal radius a and external radius b, with the shall material having mass density ρ. Calculate the 3 moments of inertia about the centre of mass of this system, writing them in terms of the total mass.
$\mathbf{1 (b)}$ Now consider a solid ellipsoidal system of mass density ρ, with perpendicular axes a, b, and c, such that the outer surface of the ellipsoid obeys the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{0.1}
\end{equation*}
$$

Find the moment of inertia tensor, defined in the Cartesian coordinate system, again in terms of the total mass.
$\mathbf{1}(\mathbf{c})$ Suppose we took the last ellipsoidal problem, and carved out a hollow sphere of radius R_{o} (with $R_{o}<a, b, c$) in the solid ellipsoid. What then is the moment of inertia tensor, in terms of the total mass?

QUESTION (2) USE OF EULER EQUATIONS: Let's consider a solid body with moments of inertia I_{1}, I_{2}, I_{3} along its principal axis directions $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. We assume that at $t=0$ it is rotating with angular velocity $\boldsymbol{\Omega}$ having components ($\Omega_{1}, \Omega_{2}, \Omega_{3}$) along these axes. Let's assume that the direction of $\boldsymbol{\Omega}$ is very close to that of \mathbf{e}_{3}, so that $\Omega_{1}, \Omega_{2} \ll \Omega_{3}(t)$.

2(a) Let's write $\Omega_{3}(t)=\Omega_{o}(t)+\omega_{3}(t)$, and $\Omega_{1}(t)=\omega_{1}(t), \Omega_{2}(t)=\omega_{2}(t)$, such that $\omega_{\alpha}(t) \ll \Omega_{o}(t)$, for $\alpha=1,2,3$, so that you have a small dimensionless parameter in the problem. Find, to lowest non-trivial approximation in this small parameter, the oscillatory solution for the dynamics of $\boldsymbol{\Omega}(t)$, assuming that at $t=0, \omega_{2}(t=0)=0$, and $\omega_{1}(t=0)=\bar{\omega}_{1}$, some constant.
$\mathbf{2 (b)}$ Now let us go to the next lowest order in your small parameter. The result for $\boldsymbol{\Omega}(t)$ is rather messy. However you can certainly find the next order correction to $\Omega_{3}(t)$, since it is given by a simple integral over the solution you have found for the lowest-order harmonic motion. Give the explicit solution for $\Omega_{3}(t)$ to this next order.
$\mathbf{2 (c)}$ What is the magnitude and direction of the angular momentum \mathbf{L} for this system?

END of 7th HOMEWORK ASSIGNMENT

NB: This will be the last homework assignment for this course

