410 Tutorial 8: Additional Information

October 2017

In the previous tutorial, I indicated that I would give you some additional
information about how to decide whether the solution you are receiving from
your numeric solver is actually providing you with a solution to the desired
problem, or if it is just giving you utter nonsense. Unfortunately, I don’t really
have time to go over this in lab (a single hour is not nearly enough), so I decided
to type up a few useful guidelines.

1 Type of Integrator

When solving an initial value problem such as,

y'=—y (1)

the first thing one typically does is to choose which integrator we will use.
For example, you might use one of RK2, RK4 RK45, Crank Nicholson, Implicit
Euler, or a Symplectic integrator. Each of these has different advantages and
disadvantages and there are no set rules for determining which is best for a
given problem. However, these are a few guidelines which will hopefully make
your lives easier. Please note that this list is by no means definitive or particu-
larly mathematically robust. Mostly the following is just my observations from
working with these methods for a decade or so.

1.1 Explicit Runge-Kutta Methods
Prototype: RK4,

h
Vil =yi g (k1 + 2ks + 2ks + ka) + O(h°) (2)

where,



k1= f(ti,y:) (3)

h h
k2:f(ti+§7yi+§k1) (4)
h h
kng(ti+§7yi+§k2) (5)
k4 = f(t; + h,y; + hks) (6)

Advantages:
1. Simple to implement
2. Fast and efficient

3. Easy to implement varying step-size methods such as RK45 to add and
subtract resolution when needed

Disadvantages:

1. Doesn’t preserve conserved quantities very well (errors in energy and mo-
mentum can grow quite quickly, but usually only linearly)

2. Has difficulties with stiff equations and shocks; varying step-size methods
help but don’t always make things better

Use Case:

1. Runge-Kutta methods should be your go-to for a first attempt at solving a
problem. Easy to implement and check, RK4 or Rk45 will probably work
adequately on “most” problems

2. Great for short integration times

3. Great for non-stiff equations
1.2 TImplicit Runge-Kutta Methods, Crank Nicholson

Prototype: Implicit Euler,

Yier = Yi + hf (t+ b, yip1) + O(R?) (7)

Prototype: Crank Nicholson,

Yirl = Yi + gf (t+h,yiq1) + gf (t,yi) + O(h®) (8)

Advantages:



1. Great for stiff equations
2. Very stable

3. Great for implementing solutions to PDEs (tend to be less susceptible to
high frequency noise)

Disadvantages:
1. Each time-step requires solving matrix equations
2. Higher order implicit methods are costly to evaluate

3. Tend to blur out shocks, but at least you don’t typically get as bad Gibbs
phenomena as with RK methods

Use Case:

1. Crank-Nicholson should be your go-to method for solving wave-type equa-
tions in multiple dimensions

2. Great for stiff equations when you don’t really care about shock thickness

3. Great for solving parabolic PDEs (you can take much larger time-steps
with this type of method). For heat-type equations, explicit methods
require At < Az? for stability whereas Crank-Nicholson and many other
implicit methods are unconditionally stable

1.3 Symplectic Integrators

Prototype: Verlet Method,
Assume a Hamiltonian and equations of motion of the form,

H(p.q) =T(p) +V(q) (9)
dp OH
az—aiqu(Q) (10)
dq OH
ot = pr =g(p) (11)
(12)
then the Verlet method is:
h
Diyi/2 = pi + §f(q1‘) (13)
Giv1 = ¢ +hg(Pit1/2) (14)
h
Pi+1 =Di + §f(Qi+1) (15)

Advantages:



1. Symplectic integrators possess, as a conserved quantity, a Hamiltonian
which is slightly perturbed from the original one.

2. This means they can be used for long term integration of systems with
preserved energy and momenta and do not suffer from non-conservation
like other methods.

3. Easy to implement
Disadvantages:

1. Only really useful for systems derived from a Hamiltonian written in its
canonical form

2. Generally less useful in PDEs since when you add in numerical dissipation
(which is often necessary for stability) it destroys the constraint preserving
properties of the method.

Use Case:
1. Long term evolution of interacting particle systems.

2. Certain wave-like PDEs

2 Convergence testing

Once we have a solution, it is important to check that we have actually solved the
correct problem rather than come up with some unrelated numerical artifact.
I have illustrated this in Figure 1 for some fictional scenario; the blue curve
has smaller tolerance (or h, or other fit parameter) than the green curve but
if we decrease the tolerance again we should get something closer to the exact
solution. If we keep decreasing the tolerance and plotting the results eventually
the curves should be indistinguishable (then its probably a good idea to look
at the error as a function of time to work out how far apart the curves actually
are).

More precisely, we can exploit the convergence properties of our methods.
After performing an integration with an O(h™) method, we expect our solution
to be of the form:

Ynum (t) = Ytrue (t) + hnG(t) (16)

where €(t) is an error function reflecting the truncation error of our method.
We can verify that we have converged to the true answer by computing various
solutions using different time-steps:



solver parameters large.

x(t)

\ o, I
S exact solution
~N

~

solver parameters
smaller still not
converged.

Figure 1: Example of “eyeballing” numerical convergence

(8) = y(t) + el (")
ma® =30+ (5) <0 (18)
) =90+ (§) ) (19)

then, taking the difference between two successive evaluations,

(20)

(21)
So one can easily determine if you have converged to the correct solution by

verifying that the ratio of successive errors obeys the expected relationship.

3 Independent Residual Evaluators

The above method will tell you whether you are converging to a solution, but
it will not give you any information on whether or not you are converging to
the correct solution. There are many things that can go wrong when writing a
program to solve a given problem, and it is a very real possibility that either



the implementation of the solver or the discretization of the equation or even
the derivation of the equation itself is incorrect. We can attempt to protect
ourselves against these eventualities through the judicial use of independent
residual evaluators.

The basic idea is as follows. Using a completely separate discretization of
the differential system in question, derive a new operator for the evolution of the
system. After solving the system, apply this new operator to the solution and
verify that the operator residuals vanish in the same manner as demonstrated
in the Convergence Testing Section.

For example, if you were solving the wave equation in 1D,

0

a—‘z = (22)
ov 0%y

% o (23)

one might use a Crank Nicholson discretization:

h . h

yi = Sl o O(RY) (24)
hyly =2y +yly by =2ty

ot =y Y1 —2Y T VY I nNYi1 Yi Yit1 + O3 (25)

2 A2 2 A2

You could then use a backwards Euler discretization as an independent resid-
ual evaluator which you would expect to converge as a first order method.

n+1

L, = 4 o) (26)
o on. yn+1 _ Qyﬂ+1 + yn+1
Lv _ i v Ji—1 4 i+1 h2 )
- o +O(h?) (27)



