Phys 555: Quantum Information (Fall 2008)

Practical information

Audience: The course is intended for graduate and senior undergraduate students of Physics, Computer Science and Mathematics. A background in Quantum Mechanics is expected.

Credits: 3.

Grading: 1/3 homework assignments, 1/3 in-class written exam, 1/3 essay/ oral presentation.

Course outline

Every processing of data such as transmission or a computation is realized as a physical process. This relation is not merely a question of physical implementation. Rather, the underlying laws of physics govern which ways of information processing are possible. Since the fundamental laws of physics are quantum mechanical so should be a theory of information processing. To work out this theory is the goal of quantum information science, being at the junction of quantum physics, computer science and mathematics. At present, we only know parts of this theory. In addition, we possess a collection of puzzling examples which demonstrate the advantage of quantum over classical information processing. Among them, most notably, is Shor's factoring algorithm. It allowed, once a large-scale quantum computer could be built, breaking the widely used RSA crypto system.

In this course we address the questions of which physical systems, from the current perspective, are suitable for building a quantum computer; how to counteract the effects of decoherence; and -- once we have a large-scale quantum computer -- what can be done with it. In more detail, the course outline is as follows:

Sources and Text books

None of these texts is strictly required but I suggest you get hold of a copy of Nielsen and Chuang. John Preskill's lecture notes are an excellent resource available online. The Sakurai will be our Quantum Mechanics reference for this course. I will use Loepp and Wootters' book for Quantum Cryptography. Isham's text is supplementary reading for foundational issues of Quantum Mechanics such as the Bell inequalities and the Kochen-Specker theorem.