# ARPES on $TI_2Ba_2CuO_{6+\delta}$ : Probing the Electronic Structure of Overdoped Cuprates

#### Andrea Damascelli

Department of Physics & Astronomy University of British Columbia Vancouver, B.C.





#### **Electronic Structure of Solids**

Theoretical modeling & fabrication of nanostructured materials

**George Sawatzky** 

#### ARPES on Complex Systems

Low-energy electronic structure Photoelectron spectroscopies

#### Andrea Damascelli

#### Scanning Tunneling Microscopy

Self Assembly & atomic manipulation of nanostructured materials

**Johannes Barth** 

## ARPES ON COMPLEX SYSTEMS



#### Angle Resolved PhotoElectron Spectroscopy

FIRST EVIDENCE FOR THE QUANTIZATION OF LIGHT!

Velocity and direction of the electrons in the solid

Low-energy Electronic Structure -> Macroscopic Physical Properties

Superconductivity, Magnetism, Density Waves, ....



## **ARPES ON COMPLEX SYSTEMS**

#### **Comprehensive Material Science Program Across Canada**



- **1**. Orbital excitations in orbital-ordered ferromagnets
- 2. Magnetic fluctuations and p-wave superconductivity in Ca<sub>2-x</sub>Sr<sub>x</sub>RuO<sub>4</sub>
- **3**. Nanoscale phase separation and chemical disorder in the high-Tc superconductors
- 4. Challenging the Mystery of High-Tc Superconductivity: ARPES on Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6+d</sub>
- 5. TM-Oxide nanostructures: novel magnets, nanowires, and metal-insulator transition

Many properties of a solids are determined by electrons near E<sub>F</sub> (conductivity, magnetoresistance, superconductivity, magnetism)



Only a narrow energy slice around E<sub>F</sub> is relevant for these properties (kT=25 meV at room temperature)

#### Allowed electronic states

Repeated-zone scheme



### **ARPES: The One-Particle Spectral Function**

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)



Photoemission intensity:  $I(k, w) = I_0 |M(k, w)|^2 f(w) A(k, w)$ 

**Single-particle spectral function**  
$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k}, \omega)}{[\omega - \epsilon_{\mathbf{k}} - \Sigma'(\mathbf{k}, \omega)]^2 + [\Sigma''(\mathbf{k}, \omega)]^2}$$

**S**(k,w) : the "self-energy" captures the effects of interactions

### **Angle-Resolved Photoemission Spectroscopy**



#### Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

|      | ∆E (meV) | $\Delta 	heta$ |
|------|----------|----------------|
| past | 20-40    | <b>2°</b>      |
| now  | 2-10     | <i>0.2</i> °   |



A. Damascelli et al., PRL 85, 5194 (2000)

### Normal State Fermi Surface of Sr<sub>2</sub>RuO<sub>4</sub>

#### de Haas-van Alphen



Maeno, Rice & Manfred, PT 1, 42 (2001)

#### ARPES



Mackenzie & Maeno, RMP 75, 657 (2003)

# ARPES ON COMPLEX SYSTEMS

- High energy resolution ∆E<1meV
   </li>
- High angular precision  $\pm 0.1^{\circ}$
- Low base temperature
  ~ 2 K
- Photon energies H<sub>2</sub>, He, Ne
- Polarization control linear
- Ultra-high vacuum
  ~ 10<sup>-11</sup> torr
- Surface / Thin films
- LEED RHEED



### Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6+δ</sub>: Collaborators

#### • ARPES at UBC:

M. Platé, J. Mottershead, S. Hossain, S. Wang, P. Bloudoff,T. Pedersen, R. Norman, F. Cao, N. Ingle, A. Damascelli

#### Band Structure Calculations:

llya Elfimov

#### Samples:

Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6+δ</sub> D. Peets, Ruixing Liang, D.A. Bonn, W.N. Hardy

#### • ARPES Experiments:

#### Swiss Light Source – SIS Beamline

S. Chiuzbaian, M. Falub, M. Shi, L. Patthey





| Halogen FamilyBi FamilyPb Family1L TI FamilyLa Family2L TI FamilyYBCOHg Family |                                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                | Tc      Re        Ca <sub>2-x</sub> Na <sub>x</sub> CuO <sub>2</sub> Cl <sub>2</sub> 26        Pb <sub>2</sub> Sr <sub>2-x</sub> La <sub>x</sub> Cu <sub>2</sub> O <sub>2</sub> 33        La <sub>2-x</sub> M <sub>x</sub> CuO <sub>4</sub> 39 | F.                                                                                              | $\begin{array}{c c} & T_c & Ref. \\ \hline Sr_2CuO_2F_{2+x} & 46 \\ \hline (Sr,Ba)_2CuO_2F_{2+x} & 64 \\ \hline La_2CuO_{4+\delta} & 45 \\ \hline \end{array}$                                     |
|                                                                                | Bi2Sr1-xLnxCuO6+038TIBa1+xLa1-xCuO545                                                                                                                                                                                                          |                                                                                                 | Tl <sub>2</sub> Ba <sub>2</sub> CuO <sub>6+δ</sub> 90        HgBa <sub>2</sub> CuO <sub>4+δ</sub> 94                                                                                               |
|                                                                                |                                                                                                                                                                                                                                                |                                                                                                 | ef. $T_c$ Ref.                                                                                                                                                                                     |
|                                                                                | La <sub>2-x</sub> Sr <sub>x</sub> CaCu <sub>2</sub> O <sub>6</sub> 60        (La <sub>1-x</sub> Ca <sub>x</sub> )(Ba <sub>1.75-x</sub><br>La <sub>025+x</sub> )Cu <sub>3</sub> O <sub>y</sub> 80                                               | Pb2St2Y1xCaxCu3O8+6      80        Y1xCaxBa2Cu3O7+6      90        Bi2St2Ca1.xYxCu2O8+6      96 | YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7+δ</sub> 93        TIBa <sub>2</sub> CaCu <sub>2</sub> O <sub>7+δ</sub> 110        Tl <sub>2</sub> Ba <sub>2</sub> CaCu <sub>2</sub> O <sub>8+δ</sub> 110 |
| 8                                                                              | Bi <sub>2+x</sub> Sr <sub>2-x</sub> CaCu <sub>2</sub> O <sub>8+δ</sub> 90                                                                                                                                                                      |                                                                                                 | $HgBa_2CaCu_2O_{6+\delta}$ 120                                                                                                                                                                     |
|                                                                                |                                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                                                                                                    |
| <b>6</b>                                                                       | T <sub>c</sub> Re        Bi <sub>2+x</sub> Sr <sub>2-x</sub> Ca <sub>2</sub> Cu <sub>3</sub> O <sub>10+δ</sub> 110                                                                                                                             |                                                                                                 | of. T <sub>c</sub> Ref.<br>ПВа <sub>2</sub> Са <sub>2</sub> Си <sub>3</sub> О <sub>3+δ</sub> 120                                                                                                   |
|                                                                                |                                                                                                                                                                                                                                                |                                                                                                 | Π2Ba2Ca2Cu3O10+δ      125        HgBa2Ca2Cu3O6+δ      135                                                                                                                                          |

H. Eisaki et al., PRB 69, 064512 (2004)



### FS and Pseudogap in Underdoped Cuprates

#### ARPES on Ca<sub>2-x</sub>Na<sub>x</sub>CuO<sub>2</sub>Cl<sub>2</sub>



K.M. Shen *et al.*, Science **307**, 901 (2005)

### FS and Pseudogap in Underdoped Cuprates

#### ARPES on Ca<sub>2-x</sub>Na<sub>x</sub>CuO<sub>2</sub>Cl<sub>2</sub>





### Bilayer Splitting in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>



 $\begin{array}{ccc} \textbf{Bi}_2 \textbf{Sr}_2 \textbf{Cu}_1 \textbf{O}_{6+\delta} & Bi_2 Sr_2 Ca_1 Cu_2 O_{8+\delta} \\ \textbf{Bi} \textbf{2201} & Bi 2212 \end{array}$ 





A. I. Liechtenstein et al., PRB 54, 12505 (1996)

### Bilayer Splitting in Pb-Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+ $\delta$ </sub>



#### Pristine Bi2212

#### Pb-doped Bi2212

A.A. Kordyuk, M.S. Golden, et al., PRL 89, 077003 (2002)

### Bilayer Splitting in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>



Bilayer band splitting Anti-bonding & Bonding



A. I. Liechtenstein et al., PRB 54, 12505 (1996)

### Bilayer Splitting in Pb-Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>

# FS with bilayer splitting



A. I. Liechtenstein et al., PRB 54, 12505 (1996)

#### Overdoped Bi2212 Normal state



P.V. Bogdanov et al., PRL 89, 167002 (2002)



VOLUME 70, NUMBER 10 PHYSICA

PHYSICAL REVIEW LETTERS

8 MARCH 1993

#### Anomalously Large Gap Anisotropy in the *a-b* Plane of Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>

Z.-X. Shen,<sup>(1),(2)</sup> D. S. Dessau,<sup>(1),(2)</sup> B. O. Wells,<sup>(1),(2),(a)</sup> D. M. King,<sup>(2)</sup> W. E. Spicer,<sup>(2)</sup> A. J. Arko,<sup>(3)</sup> D. Marshall,<sup>(2)</sup> L. W. Lombardo,<sup>(1)</sup> A. Kapitulnik,<sup>(1)</sup> P. Dickinson,<sup>(1)</sup> S. Doniach,<sup>(1)</sup> J. DiCarlo,<sup>(1),(2)</sup> A. G. Loeser,<sup>(1),(2)</sup> and C. H. Park<sup>(1),(2)</sup>



### SC signatures from ARPES on Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>





Feng et al., Science 289, 277 (2000)

#### Many Body effects in the Quasiparticle Dispersion





Kaminski et al., PRL 86, 1070 (2001)

# $Mechanism for High-T_{c} \begin{cases} Magnetic fluctuations ? \\ Electron-phonon coupling ? \end{cases}$

#### Many Body effects in the Quasiparticle Dispersion

Cuk, Devereaux, Shen, et al., PRL (2004)



Mechanism for High-T<sub>c</sub> { Magnetic fluctuations ? Electron-phonon coupling ?

### Bilayer Splitting in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>



Feng, Damascelli et al., PRL 86, 5550 (2001)

# Why $TI_2Ba_2CuO_{6+\delta}$ ?

### $Tl_2Ba_2CuO_{6+\delta}$ : ideal HTSC material

- Single CuO<sub>2</sub> plane material
- Very high transition: T<sub>c</sub>(opt)=93K
- No additional CuO chains
- No structural distortions
- Low cation disorder (T/O structure)
- $d_{x^2-v^2}$  SC gap (Tsuei et al., Nature 1997)
- $(\pi,\pi)$  resonant mode (He et al., Science 2002)
- FS from AMRO (Hussey et al., Nature 2003)



### ARPES on $TI_2Ba_2CuO_{6+\delta}$



**Paring mechanism?** 

**Quantum criticality?** 

### **Orthorhombic** $TI_2Ba_2CuO_{6+\delta}$

• High-quality single crystals:

Orthorhombic TI2201 grown by self-flux method

D. Peets, Ruixing Liang, D.A. Bonn, W.N. Hardy





Ortho as-grown  $TI_{1.88}Ba_2Cu_{1.11}O_{6+\delta}$ 

Peets et al., cond-mat/0211028

### **Orthorhombic** $TI_2Ba_2CuO_{6+\delta}$

• High-quality single crystals:

Orthorhombic TI2201 grown by self-flux method

D. Peets, Ruixing Liang, D.A. Bonn, W.N. Hardy





### Swiss Light Source – SIS Beamline

#### • ARPES Experiments:

#### Surface and Interface Spectroscopy Beamline

S. Chiuzbaian, M. Falub, M. Shi, L. Patthey





- Twin Undulator
- Monochromator Energy Range: 10-800 eV Polarization: circular/planar

#### ARPES

Detector: SES2002 E/ $\Delta$ E>10<sup>4</sup> ;  $\Delta$ k=0.3° Low T: 10-300K spot size: 20x20  $\mu$ m<sup>2</sup>

Spin resolved ARPES

### **TI2201: Low energy electronic structure**



Elfimov (2004)

Hussey et al, Nature 425, 814 (2004)

### **TI2201 : ARPES Results**



### **TI2201 : Fermi Surface Volume**



Hussey et al, Nature 425, 814 (2004)

#### Hole FS volume

63% p=0.26/Cu 63% p=0.26/Cu 62% p=0.24/Cu

### **TI2201 : Fermi Surface Volume**



Hussey et al, Nature **425**, 814 (2004)

#### **Tight binding FS fit**

 $\epsilon_{\mathbf{k}} = \mu + \frac{t_1}{2} (\cos k_x + \cos k_y) + t_2 \cos k_x \cos k_y + \frac{t_3}{2} (\cos 2k_x + \cos 2k_y) \\ + \frac{t_4}{2} (\cos 2k_x \cos k_y + \cos k_x \cos 2k_y) + t_5 \cos 2k_x \cos 2k_y$ 

### **TI2201: Lineshape evolution**



### $TI_2Ba_2CuO_{6+\delta}$ : Lineshape evolution



X.J. Zhou et al., PRL 92, 187001 (2004)

### $TI_2Ba_2CuO_{6+\delta}$ : Lineshape evolution



X.J. Zhou et al., PRL 92, 187001 (2004)

### $TI_2Ba_2CuO_{6+\delta}$ : ARPES Results



### ARPES on $TI_2Ba_2CuO_{6+\delta}$



**Paring mechanism?** 

**Quantum criticality?** 

### TI2201: SC gap symmetry



0.0

0.1

 $T^{2}(K^{2})$ 

Proust et al., PRL 2002

0.2

0.3



### **TI2201: Momentum Dependent Scattering?**

Electronic scattering appears isotropic in overdoped cuprates



A. Mackenzie et al., PRB 53, 5848 (1996)

**Residual** *k*<sub>z</sub>-dispersion

**Forward scattering** 

### **TI2201: Small Angle Scattering?**

π

$$\begin{split} \underline{\Sigma}_{tot} &= \underline{\Sigma}_{el,f} + \underline{\Sigma}_{el,u} + \underline{\Sigma}_{inel} \\ V(r) &= V_0 e^{-\kappa r} \\ V_{\mathbf{k}\mathbf{k}'} &= \frac{2\pi\kappa V_0}{((\mathbf{k} - \mathbf{k}')^2 + \kappa^2)^{3/2}} \\ \Sigma(\mathbf{k}, \omega) &= n_I \sum_{k'} |V_{\mathbf{k}\mathbf{k}'}|^2 G^0(\mathbf{k}', \omega) \\ -\Sigma''(\mathbf{k}_F, 0) &\equiv \Gamma_0(\mathbf{k}_F) = \frac{3\pi n_i V_0^2}{8|v_F(\mathbf{k}_F)|\kappa^3} \end{split}$$

Zhu, P.J. Hirschfeld, & D.J. Scalapino, PRB 70, 214503 (2004)

### **TI2201: Small Angle Scattering?**

#### Small Angle Scattering: strong T-dependence at $(\pi, 0)$





### **ARPES on TI2201: Conclusions**





4

 $\sim(\pi, 0)$ 

0

M. Platé, J. Mottershead, A. Damascelli, et al., cond-mat/0503117