Study of many-body quantum phenomena in the ruthenium-oxides by ARPES

Andrea Damascelli

Department of Physics & Astronomy University of British Columbia Vancouver, B.C.

Study of many-body quantum phenomena in the ruthenium-oxides by ARPES

Andrea Damascelli

Department of Physics & Astronomy University of British Columbia Vancouver, B.C.

S. Wang F. Cao T. Pedersen R. Norman P. Bloudoff M. Plate S. Hossain J. Mottershead Nicholas Ingle

Outline

- Electronic structure of complex systems
- State-of-the-Art ARPES: the essentials
- ► Sr₂RuO₄
 - Introduction

Interesting properties and open issues Fermi surface controversy

Experimental results

Bulk & surface electronic structure Surface Ferromagnetism ?

Outlook and conclusions

Collaborators

• ARPES at Stanford:

K.M. Shen, D.H. Lu, F. Baumberger, D.L. Feng, N.P. Armitage, F. Ronning, C. Kim, **Z.-X. Shen**

Band Structure Calculations (NRL, Washington):

I.I. Mazin, D.J. Singh

• Samples:

Sr₂RuO₄
S. Nakatsuji, T. Kimura, Y. Tokura, Z.Q. Mao, Y. Maeno

Sr₃Ru₂O₇
R.S. Perry, A.P.Mackenzie, Y. Maeno

• $TI_2Ba_2CuO_{6+\delta}$

D. Peets, D.A. Bonn, R. Liang, W.N. Hardy

ARPES: The One-Particle Spectral Function

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

Photoemission intensity: $I(k, w) = I_0 |M(k, w)|^2 f(w) A(k, w)$

Single-particle spectral function
$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k}, \omega)}{[\omega - \epsilon_{\mathbf{k}} - \Sigma'(\mathbf{k}, \omega)]^2 + [\Sigma''(\mathbf{k}, \omega)]^2}$$

S(k,w) : the "self-energy" captures the effects of interactions

Many properties of a solids are determined by electrons near E_F (conductivity, magnetoresistance, superconductivity, magnetism)

Only a narrow energy slice around E_F is relevant for these properties (kT=25 meV at room temperature)

Allowed electronic states

Repeated-zone scheme

Sr₂RuO₄: basic properties

2D perovskite

Unconventional superconductivity

- Pairing mechanism?
- Order parameter?
- FM-AF fluctuations ?

Rice & Sigrist, JPCM 7, L643 (1995)

Lattice-magnetism interplay Orbital degrees of freedom

- Sr_2RuO_4 : 2D Fermi Liquid (ρ_c/ρ_{ab} =850)
- Ca₂RuO₄: insulating Anti-FerroMagnet
- **SrRuO₃** : metallic **FerroMagnet**

Low-Energy Electronic structure of Sr₂RuO₄

 $\blacktriangleright \text{ Band structure calculation: } \mathbf{3} \mathbf{t}_{2g} \text{ bands crossing } \mathbf{E}_{\mathsf{F}} \\ \blacksquare 3 \text{ sheets of FS} \begin{cases} \alpha \text{ (hole-like)} \\ \beta \text{ and } \gamma \text{ (electron-like)} \end{cases}$

Fermi Surface Topology of Sr₂RuO₄

Early ARPES results gave a different topology

de Haas-van Alphen

A.P. Mackenzie *et al.*, PRL **76**, 3786 (1996) C. Bergemann *et al.*, PRL **84**, 2662 (2000)

I.I. Mazin *et al.*, PRL **79**, 733 (1997)

T.Yokoya *et al.*, PRB **54**, 13311 (1996) D.H. Lu *et al.*, PRL **76**, 4845 (1996)

ARPES

Reliability of ARPES ??

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.H. Lu et al., PRL 76, 4845 (1996)

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL 85, 5194 (2000)

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.H. Lu et al., PRL 76, 4845 (1996)

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL 85, 5194 (2000)

Surface instability

Band folding

Surface reconstruction of cleaved Sr₂RuO₄

R. Matzdorf et al., Science 289, 746 (2000)

Rotation of the RuO₆ octahedra around the c axis (9°)

Surface electronic structure of Sr₂RuO₄

On samples cleaved at 180 K the surface-related features are suppressed

E_F mapping ±10 meV Cold cleave T=10 K

Hot cleave T=180 K

Bulk electronic structure of Sr₂RuO₄

What do we learn about the **bulk** electronic structure?

- FS topology
- Fermi velocity
- Effective mass

I.I. Mazin *et al.*, PRL **79**, 733 (1997)

Surface reconstruction of cleaved Sr₂RuO₄

STM topography

R. Matzdorf et al., Science 289, 746 (2000)

T-dependent cleavage plane?

STM spectroscopy

M.D. Upward *et al.,* PRB **65**, 220512 (2002)

DOS suppression within 500 μ V Gap closes for T>1.5K ; B>700G $2\Delta_{max}/kT_{c} \sim 8.0$

Opening of a SC gap

Surface Ferromagnetism?

Surface Reconstruction + Surface Ferromagnetism

R. Matzdorf et al., Science 289, 746 (2000)

First principle calculations

FM surface

Exchange splitting: **500 meV** Magnetic moment: **1.0** $\mu_{\rm B}$ /**Ru**

Z. Fang & K. Terakura, PRB 64, 20509 (2001)

Surface Ferromagnetism?

Surface Reconstruction + Surface Ferromagnetism

R. Matzdorf *et al.*, Science **289**, 746 (2000)

Spin-split Fermi-level crossings of the electronic bands in **Sr**₂**RuO**₄

P.K. de Boer *et al.*, PRB **59**, 9894 (1999)

Where to look for spin-split electronic bands in Sr₂RuO₄?

Surface Ferromagnetism?

Band structure results

K.M. Shen, A. Damascelli et al., PRB 64, 180502(R) (2001)

ARPES studies on Sr₂RuO₄

VOLUME 92, NUMBER 13

PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2004

Quasiparticle Line Shape of Sr₂RuO₄ and Its Relation to Anisotropic Transport

S.-C. Wang,¹ H.-B. Yang,¹ A. K. P. Sekharan,¹ H. Ding,¹ J. R. Engelbrecht,¹ X. Dai,^{1,*} Z. Wang,¹ A. Kaminski,² T. Valla,³ T. Kidd,³ A.V. Fedorov,^{3,†} and P. D. Johnson³

Volume 93, Number 11	PHYSICAL	REVIEW	LETTERS	week ending 10 SEPTEMBER 2004

Kink in the Dispersion of Layered Strontium Ruthenates

Y. Aiura,^{1,*} Y. Yoshida,^{1,2} I. Hase,¹ S. I. Ikeda,¹ M. Higashiguchi,³ X. Y. Cui,³ K. Shimada,⁴ H. Namatame,⁴ M. Taniguchi,^{3,4} and H. Bando¹

PHYSICAL REVIEW B 70, 060506(R) (2004)

Technique for bulk Fermiology by photoemission applied to layered ruthenates

A. Sekiyama,¹ S. Kasai,¹ M. Tsunekawa,¹ Y. Ishida,¹ M. Sing,^{1,2} A. Irizawa,¹ A. Yamasaki,¹ S. Imada,¹ T. Muro,³ Y. Saitoh,^{3,4} Y. Ōnuki,⁵ T. Kimura,^{6,*} Y. Tokura,⁶ and S. Suga¹

Fermi surface topology of $Ca_{1.5}Sr_{0.5}RuO_4$ determined by ARPES

S.-C. Wang,¹ H.-B. Yang,¹ A.K.P. Sekharan,¹ S. Souma,² H. Matsui,² T. Sato,² T. Takahashi,² Chenxi Lu,³ Jiandi Zhang,³ R. Jin,⁴ D. Mandrus,⁴ E.W. Plummer,⁴ Z. Wang,¹ and H. Ding¹

The layered ruthenates Sr_{n+1}Ru_nO_{3n+1}

SrRuO₃: 3D itinerant ferromagnet

n=∞

Sr₂RuO₄: highly 2D Fermi liquid and unconventional superconductor. Pauli paramagnet.

n=1

a

Anomalous power-laws in the resistivity: $\rho = \rho_0 + AT^{\alpha}$

Diverging *A* coefficient as the metamagnetic transition is approached : $\rho = \rho_0 + AT^2$

S.A.Grigera et al, Science **294**, 329 (2001)

ARPES studies on Sr₃Ru₂O₇

D.J. Singh and I.I. Mazin PRB **63**, 165101 (2001)

S.Hossain, F. Baumberger

Binding Energy (meV)

ARPES studies on Sr₃Ru₂O₇

Binding Energy (meV)

.02

01

D.J. Singh and I.I. Mazin PRB 63, 165101 (2001)

S.Hossain, F. Baumberger

ARPES studies on (Ca,Sr)_{n+1}Ru_nO_{3n+1}

VOLUME 92, NUMBER 13

PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2004

Quasiparticle Line Shape of Sr₂RuO₄ and Its Relation to Anisotropic Transport

S.-C. Wang,¹ H.-B. Yang,¹ A. K. P. Sekharan,¹ H. Ding,¹ J. R. Engelbrecht,¹ X. Dai,^{1,*} Z. Wang,¹ A. Kaminski,² T. Valla,³ T. Kidd,³ A.V. Fedorov,^{3,†} and P. D. Johnson³

Volume 93, Number 11	PHYSICAL	REVIEW	LETTERS	week ending 10 SEPTEMBER 2004

Kink in the Dispersion of Layered Strontium Ruthenates

Y. Aiura,^{1,*} Y. Yoshida,^{1,2} I. Hase,¹ S. I. Ikeda,¹ M. Higashiguchi,³ X. Y. Cui,³ K. Shimada,⁴ H. Namatame,⁴ M. Taniguchi,^{3,4} and H. Bando¹

PHYSICAL REVIEW B 70, 060506(R) (2004)

Technique for bulk Fermiology by photoemission applied to layered ruthenates

A. Sekiyama,¹ S. Kasai,¹ M. Tsunekawa,¹ Y. Ishida,¹ M. Sing,^{1,2} A. Irizawa,¹ A. Yamasaki,¹ S. Imada,¹ T. Muro,³ Y. Saitoh,^{3,4} Y. Ōnuki,⁵ T. Kimura,^{6,*} Y. Tokura,⁶ and S. Suga¹

Fermi surface topology of $Ca_{1.5}Sr_{0.5}RuO_4$ determined by ARPES

S.-C. Wang,¹ H.-B. Yang,¹ A.K.P. Sekharan,¹ S. Souma,² H. Matsui,² T. Sato,² T. Takahashi,² Chenxi Lu,³ Jiandi Zhang,³ R. Jin,⁴ D. Mandrus,⁴ E.W. Plummer,⁴ Z. Wang,¹ and H. Ding¹

ARPES on $TI_2Ba_2CuO_{6+\delta}$?

$TI_2Ba_2CuO_{6+\delta}$: ideal HTSC material

- Single CuO₂ plane material
- Very high transition: T_c(opt)=93K
- No additional CuO chains
- No structural distortions
- Low cation disorder (T/O structure)

D. Peets, R. Liang D. Bonn, W. Hardy

Swiss Light Source – SIS Beamline

• ARPES Experiments:

Surface and Interface Spectroscopy Beamline

S. Chiuzbaian, M. Falub, M. Shi, L. Patthey

- Twin Undulator
- HR Monochromator Energy Range: 10-800 eV Polarization: circular/planar

ARPES

Detector: SES2002 E/ Δ E>10⁴ ; Δ k=0.3° Low T: 10-300K spot size: 20x20 μ m²

Spin resolved ARPES

Tl₂Ba₂CuO_{6+δ} : ARPES Results

M. Platé, J. Mottershead, A. Damascelli, et al., cond-mat/0503117

$TI_2Ba_2CuO_{6+\delta}$: ARPES Results

M. Platé, J. Mottershead, A. Damascelli, et al., cond-mat/0503117

Tl₂Ba₂CuO_{6+δ} : ARPES Results

M. Platé, J. Mottershead, A. Damascelli, et al., cond-mat/0503117

Conclusions

ARPES results from Sr₂RuO₄

- Bulk and surface electronic structure
- FS topology in unprecedented detail
- Fermi velocity and effective mass
- Investigate the issue of surface FM

Feedback to microscopic models Quantify the spin/charge correlation effects

Films/interfaces $Sr_3Ru_2O_7$ $Tl_2Ba_2CuO_{6+\delta}$

ARPES is a **powerful tool** for the study of the electronic structure of complex materials

