

Andrea Damascelli UBC-MPI Quantum Matter Institute

ARPES on Correlated Electron Systems CUSO Lecture – Lausanne 02/2011

UNIVERSITY OF BRITISH COLUMBIA

Max-Planck Society

Canadian Light Source

UBC-MPI Quantum Matter Institute

Outline Part I

- Introduction: Transition metal oxides
- Birth and history of photoemission
- ARPES: Fundamentals and spectral function
- ARPES: Technique and developments
- Bulk, surface, and Fermi surfaces: Sr₂RuO₄
- Superconducting gap: BCS and HTSC

CUSO Lecture – Lausanne 02/2011

Physica Scripta. Vol. T109, 61-74, 2004

Probing the Electronic Structure of Complex Systems by ARPES

Andrea Damascelli

Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada

Received June 18, 2003; accepted June 30, 2003

PACS Ref: 79.60.i, 71.18.+y; 71.20.-b

Abstract

Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. The last decade witnessed significant progress in this technique and its applications, thus ushering in a new era in photoelectron spectroscopy; today, ARPES experiments with 2meV energy resolution and 0.2° angular resolution are a reality even for photoemission on solids. In this paper we will review the fundamentals of the technique and present some illustrative experimental results; we will show how ARPES can probe the momentum-dependent electronic structure of solids providing detailed information on band dispersion and Fermi surface as well as on the strength and nature of many-body correlations, which may profoundly affect the oneelectron excitation spectrum and in turn the macroscopic physical properties.

photoemission event is decomposed in three independent steps: optical excitation between the initial and final bulk Bloch eigenstates, travel of the excited electron to the surface, and escape of the photoelectron into vacuum after transmission through the surface potential barrier. This is the most common approach, in particular when photoemission spectroscopy is used as a tool to map the electronic band structure of solids. However, from the quantummechanical point of view photoemission should not be described in terms of several independent events but rather as a *one-step* process (Fig. 1(b)): in terms of an optical transition (with probability given by Eq. (12)) between initial and final states consisting of many-body wave functions that obey appropriate boundary conditions at the surface of the solid. In particular (see Fig. 2), the initial state should be one of the possible *N*-electron eigenstates of the semi-infinite crystal, and the final state must be one of the

Outline Part I

Introduction:

Transition metal oxides

CUSO Lecture – Lausanne 02/2011

Strongly Correlated Electron Systems

- Kondo
- Mott-Hubbard
- Heavy Fermions
- Unconventional SC
- Spin-charge order
- Colossal MR

Strongly Correlated Electron Systems

Novel Complex Materials and Functionalities

Tune the physical properties

Chakhalian et al., Nature Physics 2006

Modern synthesis methods

Single crystals, multilayers, nanostructures

- Sophisticated structural tools
 Physical, chemical, and magnetic structures
- Novel probes of intrinsic susceptibilities Lattice, magnetic, and electronic excitations

 $\mathcal{E}(q,q',\omega) \quad \chi(q,q',\omega)$ $N(\vec{r}, E) \qquad A(\vec{k}, E)$

Interface-tuned magnetism in oxide multilayers

Understand interplay of lattice, spin, charge, orbital degrees of freedom

Outline Part I

Birth and history of photoemission

CUSO Lecture – Lausanne 02/2011

Probing Electrons in Reciprocal Space

Angle Resolved PhotoElectron Spectroscopy

FIRST EVIDENCE FOR THE QUANTIZATION OF LIGHT!

Velocity and direction of the electrons in the solid

Superconductivity, Magnetism, Density Waves,

X-ray diffraction

Photoemission

Interaction Effects between Electrons : "Many-body Physics"

Many-body effects are due to the interactions between the electrons and each other, or with other excitations inside the crystal :

1) A "many-body" problem : intrinsically hard to calculate and understand

2) Responsible for many surprising phenomena :

Superconductivity, Magnetism, Density Waves,

Non-Interacting

Interaction Effects between Electrons : "Many-body Physics"

Many-body effects are due to the interactions between the electrons and each other, or with other excitations inside the crystal :

1) A "many-body" problem : intrinsically hard to calculate and understand

2) Responsible for many surprising phenomena :

Superconductivity, Magnetism, Density Waves,

Einstein's Annus Mirabilis: 1905

The Brownian motion

"On the motion of small particles suspended in liquids atrest required by the molecular-kinetic theory of heat." Annalen der Physik, **17** (1905), pp. 549-560.

• The photoelectric effect

"On a heuristic viewpoint concerning the production and transformation of light" Annalen der Physik, **17** (1905), pp. 132-148.

The special theory of relativity

"On the electrodynamics of moving bodies" Annalen der Physik, **17** (1905), pp. 891-921

Mass-energy Equivalency E=mc²

"Does the inertia of a body depend on its energy?" Annalen der Physik, **18** (1905), pp. 639-41.

UBC - 2005

Einstein's Annus Mirabilis: 1905

The Brownian motion

"On the motion of small particles suspended in liquids atrest required by the molecular-kinetic theory of heat." Annalen der Physik, **17** (1905), pp. 549-560.

The photoelectric effect

"On a heuristic viewpoint concerning the production and transformation of light" Annalen der Physik, **17** (1905), pp. 132-148.

The special theory of relativity

"On the electrodynamics of moving bodies" Annalen der Physik, **17** (1905), pp. 891-921

Mass-energy Equivalency E=mc²

"Does the inertia of a body depend on its energy?" Annalen der Physik, **18** (1905), pp. 639-41.

UBC - 2005

Emission of an electron due to the absorption of light

Emission of an electron due to the absorption of light

First experimental evidence for the quantization of light

1887 Hertz finds Maxwell's waves; and something else

UBC - 2005

Andrea Damascelli The small **RECEIVER SPARK** was more vigorous when the receiver was exposed to the ultraviolet light form the **TRANSMITTER SPARK**

1902 von Lenard varies the intensity and color of the light

The NUMBER of electrons is proportional to the INTENSITY

UBC - 2005

Andrea Damascelli The maximum $E_{kin} = \frac{1}{2} mv^2$ is proportional to the FREQUENCY

1905 Einstein' hypothesis: light quanta with $E = hv = hc / \lambda$

The maximum $E_{kin} = \frac{1}{2}mv^2$ is proportional to the FREQUENCY but depends also on the material work function W

The NUMBER of electrons is proportional only to the INTENSITY

UBC - 2005

1887 Heinrich Hertz

- **1897 Joseph Thomson**: "for the theoretical and experimental investigations on the conduction of electricity by gases"
- 1888 Wilhelm Hallwachs
- **1902** Philipp von Lenard: "for his work on cathode rays"
- **1905** Albert Einstein: "for his services to Theoretical Physics, and for his discovery of the law of the photoelectric effect"
- UBC 2005

Andrea Damascelli **1916 Robert Millikan:** "for his work on the elementary charge of electricity and on the photoelectric effect"

1906

In 1913 Einstein was elected to the Prussian Academy of Sciences and appointed to a research position in Berlin. In his nomination speech to the Prussian Academy, Planck says:

"Summing up, we may say that there is hardly one among the great problems in which modern physics is so rich, to which Einstein has not made an important contribution."

"That he may sometimes have missed the target in his speculations, as for example, in his hypothesis of light quanta, cannot really be held too much against him, for it is not possible to introduce fundamentally new ideas, even in the most exact sciences, without occasionally taking a risk".

UBC – 2005

Scientific application: Spectroscopy

Electron Spectroscopy for Chemical Analysis (ESCA)

Kai Siegbahn:

"for his contribution to the development of high-resolution electron spectroscopy"

UBC – 2005

Scientific application: Spectroscopy

Electron Spectroscopy for Chemical Analysis (ESCA)

Kai Siegbahn:

"for his contribution to the development of high-resolution electron spectroscopy"

 $E_{kin} = h\nu - \phi - |E_B|$

UBC – 2005

Solid State: Electrons in Reciprocal Space

Wave functions in a 1D lattice

Allowed electronic states

Repeated-zone scheme

1D chain of atoms

Solid State: Electrons in Reciprocal Space

Many properties of a solids are determined by electrons near E_F (conductivity, magnetoresistance, superconductivity, magnetism)

Only a narrow energy slice around E_F is relevant for these properties (kT=25 meV at room temperature)

Band Mapping and Fermi Contours

ARPES: Widespread Impact in Complex Materials

HTSC's

CMR's

CDW's

Quasicrystals

Nature 2000

Quantum Wells

Nanotubes

Nature 2003

Diamond

Nature 2005

Outline Part I

ARPES: Fundamentals and spectral function

CUSO Lecture – Lausanne 02/2011

Band Velocity $v_k = \frac{1}{\hbar} \frac{\partial \mathcal{E}_k}{\partial k}$

Cu surface state

Band Mass $\frac{1}{m_{k}} = \frac{1}{\hbar^{2}} \frac{\partial^{2} \mathcal{E}_{k}}{\partial k^{2}}$

Graphene

Momentum

Reinert & Hufner, NJP 2005

Momentum

Zhou et al., Nat. Phys. 2006

Angle-Resolved Photoemission Spectroscopy

ARPES: One-Step vs Three-Step Model

Photoemission Intensity $I(k,\omega)$ $w_{fi} \propto |\langle \Psi_f^N | \mathbf{A} \cdot \mathbf{p} | \Psi_i^N \rangle|^2 \delta(E_f^N - E_i^N - h\nu)$

One-step model

ARPES: One-Step vs Three-Step Model

Photoemission Intensity $I(k,\omega)$ $w_{fi} \propto |\langle \Psi_f^N | \mathbf{A} \cdot \mathbf{p} | \Psi_i^N \rangle|^2 \delta(E_f^N - E_i^N - h\nu)$

One-step model

Three-step model

ARPES: The Sudden Approximation

Photoemission Intensity $I(k,\omega)$ $w_{fi} \propto |\langle \Psi_f^N | \mathbf{A} \cdot \mathbf{p} | \Psi_i^N \rangle|^2 \delta(E_f^N - E_i^N - h\nu)$

> Sudden approximation One Slater determinant

$$\Psi_{f}^{N} = \mathcal{A} \phi_{f}^{\mathbf{k}} \Psi_{f}^{N-1}$$
$$\Psi_{i}^{N} = \mathcal{A} \phi_{i}^{\mathbf{k}} \Psi_{i}^{N-1}$$

ARPES: The Sudden Approximation

Photoemission Intensity $I(\mathbf{k}, \boldsymbol{\omega})$ $w_{fi} \propto |\langle \phi_f^{\mathbf{k}} | \mathbf{A} \cdot \mathbf{p} | \phi_i^{\mathbf{k}} \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle|^2 \delta(\boldsymbol{\omega} - h\nu)$

> Sudden approximation One Slater determinant

$$\Psi_{f}^{N} = \mathcal{A} \phi_{f}^{\mathbf{k}} \Psi_{f}^{N-1}$$
$$\Psi_{i}^{N} = \mathcal{A} \phi_{i}^{\mathbf{k}} \Psi_{i}^{N-1}$$
ARPES: The Sudden Approximation

Photoemission Intensity $I(k,\omega)$ $w_{fi} \propto |\langle \phi_f^k | \mathbf{A} \cdot \mathbf{p} | \phi_i^k \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle|^2 \delta(\omega - h\nu)$

> Sudden approximation One Slater determinant

$$\Psi_{f}^{N} = \mathcal{A} \phi_{f}^{\mathbf{k}} \Psi_{f}^{N-1}$$
$$\Psi_{i}^{N} = \mathcal{A} \phi_{i}^{\mathbf{k}} \Psi_{i}^{N-1}$$

ARPES: Role of the Crystal Potential

Photoemission Intensity $I(k,\omega)$ $w_{fi} \propto |\langle \phi_f^k | \underline{\mathbf{A}} \cdot \nabla V | \phi_i^k \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle |^2 \delta(\omega - h\nu)$

> Sudden approximation One Slater determinant

$$\Psi_{f}^{N} = \mathcal{A} \phi_{f}^{\mathbf{k}} \Psi_{f}^{N-1}$$
$$\Psi_{i}^{N} = \mathcal{A} \phi_{i}^{\mathbf{k}} \Psi_{i}^{N-1}$$

ARPES: Role of the Crystal Potential

Photoemission Intensity $I(k,\omega)$ $w_{fi} \propto |\langle \phi_f^k | \underline{\mathbf{A}} \cdot \nabla V | \phi_i^k \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle |^2 \delta(\omega - h\nu)$

> Sudden approximation One Slater determinant

$$\Psi_{f}^{N} = \mathcal{A} \phi_{f}^{\mathbf{k}} \Psi_{f}^{N-1}$$
$$\Psi_{i}^{N} = \mathcal{A} \phi_{i}^{\mathbf{k}} \Psi_{i}^{N-1}$$

ARPES: Role of the Crystal Potential

 $\begin{array}{l} \textbf{Photoemission} \\ \textbf{Intensity } I(\textbf{k,\omega}) \end{array} \} \ w_{fi} \propto |\langle \phi_f^{\mathbf{k}} | \underline{\mathbf{A} \cdot \nabla V} | \phi_i^{\mathbf{k}} \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle |^2 \delta(\omega - h\nu) \end{array}$

"In a nearly-free electron gas, optical absorption may be viewed as a two-step process. The absorption of the photon provides the electron with the additional energy it needs to get to the excited state. The crystal potential imparts to the electron the additional momentum it needs to reach the excited state. This momentum comes in multiples of the reciprocal-lattice vectors G: So in a reduced zone picture, the transitions are vertical in wave-vector space. But in photoemission, it is more useful to think in an extended-zone scheme."

G.D. Mahan, Phys. Rev. B 2, 4334 (1970)

ARPES: Three-step Model & Sudden Approximation

 $\begin{array}{l} \textbf{Photoemission} \\ \textbf{Intensity } I(\textbf{k,\omega}) \end{array} \} \ w_{fi} \propto |\langle \phi_f^{\mathbf{k}} | \underline{\mathbf{A}} \cdot \nabla V | \phi_i^{\mathbf{k}} \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle |^2 \delta(\omega - h\nu) \end{array}$

The photoemission intensity for the SAME band is very DIFFERENT in various Brillouin zones

ARPES: Energetics and Kinematics

ARPES: Energetics and Kinematics

Electrons in Reciprocal Space

ARPES in 3D: Inner Potential and Determination of k_z

Free-electron final state
$$E_f(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m} - |E_0| = \frac{\hbar^2 (\mathbf{k}_{\parallel}^2 + \mathbf{k}_{\perp}^2)}{2m} - |E_0|$$

because

 $\hbar^2 \mathbf{k}_{\parallel}^2 / 2m = E_{kin} \sin^2 \vartheta \qquad E_f = E_{kin} + \phi \qquad V_0 = |E_0| + \phi$

$$\mathbf{k}_{\perp} = \frac{1}{\hbar} \sqrt{2m(E_{kin} \cos^2 \vartheta + V_0)}$$

ARPES: Interacting Systems

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

In general $\Psi_i^{N-1} = c_{\mathbf{k}} \Psi_i^N$ NOT orthogonal Ψ_m^{N-1}

ARPES: Interacting Systems

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

"Like removing a stone from a water bucket"

ARPES: Fermi Liquid Description

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

Photoemission intensity: $I(k,\omega)=I_0 |M(k,\omega)|^2 f(\omega) A(k,\omega)$

Non-interacting

Fermi Liquid

$$A(\mathbf{k},\omega)\!=\!\delta(\omega\!-\!\epsilon_k)$$

No Renormalization Infinite lifetime

$$A(\mathbf{k},\omega) = Z_{\mathbf{k}} \frac{\Gamma_{\mathbf{k}}/\pi}{(\omega - \varepsilon_{\mathbf{k}})^2 + \Gamma_{\mathbf{k}}^2} + A_{inc}$$
$$m^* > m \quad |\varepsilon_{\mathbf{k}}| < |\epsilon_{\mathbf{k}}|$$
$$\tau_{\mathbf{k}} = 1/\Gamma_{\mathbf{k}}$$

 $\Sigma(k,\omega)$: the "self-energy" captures the effects of interactions

Franck-Condon

HIGH-TEMPERATURE SUPERCONDUCTIVITY -

Testing Fermi-liquid models

G.A. Sawatzky

"In gaseous hydrogen, the equilibrium bond length is dependent on the degree of occupation of that level. The electrons are dressed by interatomic displacements. The intensities are given by the Franck-Condon factors, the molecular equivalent of the sudden approximation. The ARPES spectrum of solid hydrogen, developed from the molecular spectrum, will be angle dependent but for some angle will resemble the broken line. The fundamental transition (0-0) becomes the solid state quasiparticle peak. The phonon excitations develop into a broad, incoherent quasicontinuum."

ARPES: The One-Particle Spectral Function

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

Photoemission intensity: $I(k,\omega)=I_{\theta}|M(k,\omega)|^{2}f(\omega)A(k,\omega)$

Single-particle spectral function
$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k}, \omega)}{[\omega - \epsilon_{\mathbf{k}} - \Sigma'(\mathbf{k}, \omega)]^2 + [\Sigma''(\mathbf{k}, \omega)]^2}$$

 $\Sigma(\mathbf{k},\omega)$: the "self-energy" captures the effects of interactions

Many-Body Correlation Effects in Sr₂RuO₄

N.J.C. Ingle, K.M. Shen, A. Damascelli et al., PRB 72, 205114 (2005)

ARPES: FWHM and Inverse Lifetime in 3D

FWHM of an ARPES peak

г _		$\frac{\Gamma_i}{ v_{i\perp} }$	$+ \frac{\Gamma_f}{ v_f\perp }$	
L — 1	$\left \frac{1}{v_{i\perp}} \left[1 - \right] \right $	$\frac{m v_{i\parallel} \sin^2 \vartheta}{\hbar k_{\parallel}} \bigg]$	$-rac{1}{v_{f\perp}}\left[1- ight]$	$-\frac{mv_{f\parallel}\sin^2\vartheta}{\hbar k_{\parallel}}\right]$

Hansen et al., PRL 80, 1766 (1998) Photoemission from Ag(100) Photoemission Intensity (arb. units) $h_{\rm V} = 13 \, {\rm eV}$ $\theta = 0$ (1) $h_{\rm V} = 11.25 \ {\rm eV}$ $\theta = 80^{\circ}$ 2 0 Binding Energy (eV)

Photon polarization

Photon energy

Photon energy

Molodstov et al., Phys. Rev. Lett. **85**, 4184(2000)

ARPES: Polarization Dependence

Dispersion of the Cu(111) surface state

M. Mulazzi et al., Phys. Rev. B 79, 165421 (2009)

ARPES: Polarization Dependence

Fermi surface of underdoped YBCO

E || CuO chains

$E \perp CuO$ chains

Fournier et al., Nature Physics 6, 905 (2010)

ARPES: Photon Energy Dependence

Bianchi et al., Nature Comm. 1, 128 (2010)

ARPES: Photon Energy Dependence

Importance of Matrix Elements in the ARPES Spectra of BISCO

A. Bansil¹ and M. Lindroos^{1,2}

¹Physics Department, Northeastern University, Boston, Massachusetts 02115 ²Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland (Received 9 July 1999)

$$P(E,\omega) \sim |\langle \Psi_f^{\text{bulk}} | \Delta | \Psi_i^{\text{bulk}} \rangle|^2 A_i(E)$$

One-step model calculation + LDA

$$I(\mathbf{k}_{\parallel}, E, \hbar\omega) =$$

$$\frac{1}{\pi} \operatorname{Im} \langle \mathbf{k}_{\parallel} | G_{2}^{+}(E + \hbar\omega) \Delta G_{1}^{+}(E) \Delta^{\dagger}$$

$$\times G_{2}^{-}(E + \hbar\omega) | \mathbf{k}_{\parallel} \rangle$$

ARPES: Surface vs Bulk Sensitivity

Mean-free path for excited electrons

Sekiyama et al., Nature 403, 396 (2000)

ARPES: Advantages and Limitations

Advantages

- Direct information about the electronic states!
- Straightforward comparison with theory little or no modeling.
- High-resolution information about
 BOTH energy and momentum
- Surface-sensitive probe
- Sensitive to "many-body" effects
- Can be applied to small samples (100 μm x 100 μm x 10 nm)

Limitations

- Not bulk sensitive
- Requires clean, atomically flat surfaces in ultra-high vacuum
- Cannot be studied as a function of pressure or magnetic field

ARPES: Widespread Impact in Complex Materials

HTSC's

CMR's

CDW's

Quasicrystals

Nature 2000

Quantum Wells

Nanotubes

Nature 2003

Diamond

Nature 2005

Outline Part I

ARPES: Technique and developments

CUSO Lecture – Lausanne 02/2011

Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

	$\Delta E (meV)$	$\Delta \theta$
past	20-40	2°
now	1-10	0.2°

Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

	$\Delta E (meV)$	$\Delta \theta$
past	20-40	2°
now	1-10	0.2°

Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

	$\Delta E (meV)$	$\Delta \theta$
past	20-40	2°
now	1-10	0.2°

A. Damascelli et al., PRL 85, 5194 (2000)

STANFORD SYNCHROTRON RADIATION LABORATORY

$\Delta E \ (meV)$	$\Delta \theta$
1-10	0.2°

ARPES ON COMPLEX SYSTEMS

- High energy resolution ∆E<1meV
- High angular precision ± 0.05°
- Low base temperature

~ 2 K

- Photon energies H₂, He, Ne
- Polarization control linear
- Ultra-high vacuum
 ~ 10⁻¹¹ torr
- Surface / Thin films
- Low Energy Electron Diffraction

ARPES ON COMPLEX SYSTEMS

- High energy resolution ∆E<1meV
- High angular precision ± 0.05°
- Low base temperature
 ~ 2 K
- Photon energies H₂, He, Ne
- Polarization control linear
- Ultra-high vacuum
 ~ 10⁻¹¹ torr
- Surface / Thin films

LEED

ARPES ON COMPLEX SYSTEMS

- High energy resolution ∆E<1meV
- High angular precision ± 0.05°
- Low base temperature
 ~ 2 K
- Photon energies
 - H₂, He, Ne
- Polarization control linear
- Ultra-high vacuum
 ~ 10⁻¹¹ torr
- Surface / Thin films

• LEED

ARPES ON COMPLEX SYSTEMS

MBE Growth

Characterization Structure – chemistry

ARPES Polarization - Energy

New Developments: ARPES + Spin + Time

ARPES+Spin polarimeter

ARPES+Time of Fight

Wang et al., arXiv:1101.5636 (2011)

Nishide et a., New J. Phys. 12, 065011 (2010)

Quantum Materials Spectroscopy Center at CLS

Quantum Materials Spectroscopy Center at CLS

- Broad energy range
- Polarization control
- Resolving power
- Maximum flux

- High-res. ARPES
- Spin polarimeter
- Motion Accuracy
- Low Temperature
- Oxide MBE
- Organic MBE
- LEED/RHEED
- STM/AFM/XPS

Novel Complex Materials and Functionalities

Outline Part I

Bulk, surface, and Fermi surfaces: Sr₂RuO₄

CUSO Lecture – Lausanne 02/2011

Sr₂RuO₄: basic properties

2D perovskite

Unconventional superconductivity

- Pairing mechanism ?
- Order parameter?
- FM-AF fluctuations ?

Rice & Sigrist, JPCM 7, L643 (1995)

1

Х

Sr

Ca

Lattice-magnetism interplay **Orbital degrees of freedom**

Sr₂RuO₄ : 2D Fermi Liquid (ρ_c/ρ_{ab} =850)

- insulating Anti-FerroMagnet Ca_2RuO_4 :
- SrRuO₃ : metallic FerroMagnet

1D ($d_{xz,yz}$) versus 2D (d_{xy}) Superconductivity ?

Band structure calculation: 3 t_{2q} bands crossing E_F

Mazin et al., PRL 79, 733 (1997)

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.H. Lu et al., PRL 76, 4845 (1996)

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL 85, 5194 (2000)

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.H. Lu et al., PRL 76, 4845 (1996)

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL 85, 5194 (2000)

Surface instability

Band folding

Surface reconstruction of cleaved Sr₂RuO₄

R. Matzdorf et al., Science 289, 746 (2000)

I4/mmm

1.8 2

Rotation of the RuO₆ octahedra around the c axis

Surface electronic structure of Sr₂RuO₄

On samples cleaved at 180 K the surface-related features are suppressed

E_F mapping ±10 meV Cold cleave T=10 K

Hot cleave T=180 K

Bulk electronic structure of Sr₂RuO₄

What do we learn about the **bulk** electronic structure?

- FS topology
- Fermi velocity
- Effective mass

I.I. Mazin et al., PRL 79, 733 (1997)

Cleaving-Temperature Dependence of Sr₂RuO₄ Surfaces

Temperature dependent STM

Y. Pennec, N.J.C. Ingle, I.S. Elfimov, E. Varene, Y. Maeno, A. Damascelli, J.V. Barth, PRL 101, 216103 (2008)

Cleaving-Temperature Dependence of Sr₂RuO₄ Surfaces

Temperature dependent STM

 $0.056 \pm 0.01 \text{ defects/nm}^2$

Y. Pennec, N.J.C. Ingle, I.S. Elfimov, E. Varene, Y. Maeno, A. Damascelli, J.V. Barth, PRL 101, 216103 (2008)

Cleaving-Temperature Dependence of Sr₂RuO₄ Surfaces

Temperature dependent STM

Two types of defects: (b) Protrusion (c) Hole

Blue dots: Sr locations on the SrO surface termination.

(d) Charge density:

DFT calculated contour at a height of 2.13 Å, for a missing charge neutral SrO molecule.

Y. Pennec, N.J.C. Ingle, I.S. Elfimov, E. Varene, Y. Maeno, A. Damascelli, J.V. Barth, PRL 101, 216103 (2008)

Surface Ferromagnetism in Sr₂RuO₄?

Surface Reconstruction + Surface Ferromagnetism

R. Matzdorf, Z. Fang, et al., Science **289**, 746 (2000)

First principle calculations

- **NM surface**: rotation of RuO₆ (R=6.5°)
- **FM surface**: R= 9.0°, ∆E=-51meV
- GGA favors FM in the bulk (4meV)

FM surface Exchange splitting: **500 meV** Magnetic moment: **1.0** μ_B/Ru

Z. Fang, K. Terakura, PRB 64, 20509 (2001)

Majority spin channel

Minority spin channel

P.K. de Boer et al., PRB 59, 9894 (1999)

Superconductivity at the Surface ?

STM results

M.D. Upward et al., PRB 65, 220512 (2002)

DOS suppression within 500 μ V Gap closes for T>1.5K ; B>700G $2\Delta_{max}/kT_{c} \sim 8.0$

Surface Ferromagnetism in Sr₂RuO₄?

Surface Reconstruction

R. Matzdorf, Z. Fang, et al., Science 289, 746 (2000)

'E

Majority spin channel

Minority spin channel

P.K. de Boer *et al.*, PRB **59**, 9894 (1999)

Spin-split Fermi-level crossings of the conduction band in Ni

Bulk and Surface FS of Sr₂RuO₄

Bulk and reconstructed surface features NO evidence for surface ferromagnetism

K. M. Shen, A. Damascelli et al., Phys. Rev. B 64, 180502 (R) (2001)

Photon Energy Dependence in Sr₂RuO₄

Binding Energy (meV)

A. Damascelli et al., PRL 85, 5194 (2000)

What is the role of spin-orbit coupling in Ru-oxides? In Sr₂RuO₄ it has been effectively mostly ignored!

PRL 101, 026406 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JULY 2008

Strong Spin-Orbit Coupling Effects on the Fermi Surface of Sr₂RuO₄ and Sr₂RhO₄

M. W. Haverkort,¹ I. S. Elfimov,² L. H. Tjeng,¹ G. A. Sawatzky,² and A. Damascelli²

¹II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

²Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 (Received 29 February 2008; published 11 July 2008)

PRL 101, 026408 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JULY 2008

Coulomb-Enhanced Spin-Orbit Splitting: The Missing Piece in the Sr₂RhO₄ Puzzle

Guo-Qiang Liu, V. N. Antonov, O. Jepsen, and O. K. Andersen. Max-Planck Institut f
ür Festkörperforschung, D-70569 Stuttgart, Germany (Received 2 April 2008; published 11 July 2008)

Eigenstates with Spin-Orbit Coupling

Starting from degenerate t_{2g} orbitals

M.W. Haverkort, I.S. Elfimov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli, PRL 101, 026406 (2008)

Outline Part I

Superconducting gap: BCS and HTSC

CUSO Lecture – Lausanne 02/2011

Superconductivity

every of K Tc Temperature

"Classic Low-temperature" Superconductors

Superconductivity can only be seen on low energy scales and needs high resolution!

"Classic Low-temperature" Superconductors

Superconductivity can only be seen on low energy scales and needs high resolution!

Kiss et al., PRL 94, 057001 (2005)

High-Temperature Superconductors

VOLUME 70, NUMBER 10 PHYSICAL REVIEW LETTERS

8 MARCH 1993

Anomalously Large Gap Anisotropy in the *a-b* Plane of $Bi_2Sr_2CaCu_2O_{8+\delta}$

Z.-X. Shen,^{(1),(2)} D. S. Dessau,^{(1),(2)} B. O. Wells,^{(1),(2),(a)} D. M. King,⁽²⁾ W. E. Spicer,⁽²⁾ A. J. Arko,⁽³⁾ D. Marshall,⁽²⁾ L. W. Lombardo,⁽¹⁾ A. Kapitulnik,⁽¹⁾ P. Dickinson,⁽¹⁾ S. Doniach,⁽¹⁾ J. DiCarlo,^{(1),(2)} A. G. Loeser,^{(1),(2)} and C. H. Park^{(1),(2)}

High-Tc Superconductors: s-wave vs. d-wave gap

High-Tc Superconductors: s-wave vs. d-wave gap

High-Tc Superconductors: Bogoliubov QP in Bi2223

$$A_{\rm BCS}(k,\,\omega) = \frac{1}{\pi} \left\{ \frac{|u_k|^2 \Gamma}{(\omega - E_k)^2 + \Gamma^2} + \frac{|v_k|^2 \Gamma}{(\omega + E_k)^2 + \Gamma^2} \right\}$$

Matsui *et al.*, PRL **90**, 217002 (2003)

High-Tc Superconductors: s-wave vs. d-wave gap

Two gaps make a HTSC?

Hufner, Hossain, Damascelli, Sawatzky Rep. Prog. Phys. 71, 062501 (2008)

High-Tc Superconductors: s-wave vs. d-wave gap

W. S. Lee et al., Nature 450, 81 (2007)

Hufner, Hossain, Damascelli, Sawatzky Rep. Prog. Phys. 71, 062501 (2008)