Introduction to Angle-Resolved Photoelectron Spectroscopy

Andrea Damascelli

Department of Physics & Astronomy University of British Columbia Vancouver, B.C.

Group: Electronic Structure of Solids

Lie mich erer mich entligt Berred Littlichten

AMPEL Bldg Room 245

H.W. Li D.L. Feng A. Riemann **G. Sawatzky** S. Wang B. Lau S. Hossain J. Mottershead A. Damascelli

Previous Collaborators

• ARPES at Stanford:

K.M. Shen, D.H. Lu, D.L. Feng, N.P. Armitage, F. Ronning, C. Kim, Z.-X. Shen

Band Structure Calculations (NRL, Washington):

I.I. Mazin, D.J. Singh

Samples:

Sr₂RuO₄
 S. Nakatsuji, T. Kimura, Y. Tokura, Z.Q. Mao, Y. Maeno

• $Bi_2Sr_2CaCu_2O_{8+\delta}$

H. Eisaki, R. Yoshizaki, J.-i. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O'Donnell, J.N. Eckstein

- YBa₂Cu₃O_{7-δ}
 D.A. Bonn, R. Liang, W.N. Hardy, A.I. Rykov, S. Tajima
- Nd_{2-x}Ce_xCuO₄
 Y. Onose, Y. Taguchi, Y. Tokura; P.K. Mang, N. Kaneko, M. Greven
- Ca_{2-x}Na_xCu₂O₂Cl₂
 L.L. Miller, T. Sasagawa, Y. Kohsaka, H. Takagi

Outline

- Electronic structure of complex systems
- ► State-of-the-Art **ARPES**: the essentials
- ► Sr₂RuO₄
 - Introduction

Interesting properties and open issues

- Experimental results Bulk & surface electronic structure
- ► ARPES on **Bi₂Sr₂CaCu₂O_{8+δ}**
- Conclusions and discussion

Strongly Correlated Electron Systems

- Kondo
- Mott-Hubbard
- Heavy Fermions
- Unconventional SC
- Spin-charge order
- Colossal MR

Strongly Correlated Electron Systems

Understand the macroscopic electronic properties and the role of competing degrees of freedom

Study the low-energy electronic excitations

Velocity and direction of the electrons in the solid

ARPES

Electrons in a 1D periodic potential

Wave functions in a 1D lattice

Allowed electronic states

Repeated-zone scheme

1D chain of atoms

Electrons in a 1D periodic potential

Many properties of a solids are determined by electrons near E_F (conductivity, magnetoresistance, superconductivity, magnetism)

Only a narrow energy slice around E_F is relevant for these properties (~kT=25 meV at room temperature).

Allowed electronic states

Repeated-zone scheme

Electrons in Reciprocal Space

Photoemission intensity: $I(k,\omega)=I_{\theta}|M(k,\omega)|^{2}f(\omega)A(k,\omega)$

Single-particle spectral function

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k}, \omega)}{[\omega - \epsilon_{\mathbf{k}} - \Sigma'(\mathbf{k}, \omega)]^2 + [\Sigma''(\mathbf{k}, \omega)]^2}$$

$\Sigma(\mathbf{k},\omega)$: the "self-energy" - captures the effects of interactions

Photoemission intensity: $I(k,\omega)=I_{\theta}|M(k,\omega)|^{2}f(\omega)A(k,\omega)$

Non-interacting

 $A(\mathbf{k},\omega)\!=\!\delta(\omega\!-\!\epsilon_k)$

No Renormalization Infinite lifetime

Fermi Liquid

$$\begin{vmatrix} A(\mathbf{k},\omega) = Z_{\mathbf{k}} \frac{\Gamma_{\mathbf{k}}/\pi}{(\omega - \varepsilon_{\mathbf{k}})^2 + \Gamma_{\mathbf{k}}^2} + A_{inc} \\ m^* > m \quad |\varepsilon_{\mathbf{k}}| < |\epsilon_{\mathbf{k}}| \\ \tau_{\mathbf{k}} = 1/\Gamma_{\mathbf{k}} \end{vmatrix}$$

ARPES: advantages and limitations

Advantages

• Direct information about electronic states!

- Straightforward comparison with theory little or no modelling.
- High-resolution information about
 BOTH energy and momentum
- Surface-sensitive probe
- Sensitive to "many-body" effects
- Can be applied to small samples (100 $\mu m~x$ 100 $\mu m~x$ 10 nm)

Limitations

Not bulk sensitive

- Requires clean, atomically flat surfaces in **ultra-high vacuum**
- Cannot be studied as a function of pressure or magnetic field

Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

	ΔE (meV)	$\Delta \theta$
past	20-40	2 °
now	2-10	<i>0.2</i> °

Momentum

	·····
(C)	Sample #4
min in many	(kx, ky)=
	(0.85,0.78)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0.75,0.79)
warmen	-(0.68,0.80)
warmen and the second s	
	10.58,0.82)
	(0.54,0.82)
- martine - mart	(0.51,0.82)
	(0.47,0.83)
www.	(0.43,0.83)
manner	(0.36,0.83)
montentra	(0.29,0.84)
man	
	(0.22,0.85)
mum	(0.18,0.85)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0.15,0.85)
month and a	(0.07,0.85)
	(-0.04,0.85)
	(-0.07,0.85)
	(-0.11,0.85)

Energy

SSRL Beamline 5-4 : NIM / Scienta System

STANFORD SYNCHROTRON RADIATION LABORATORY

$\Delta E (meV)$	$\Delta \theta$
2-10	<i>0.2</i> °

Sr₂RuO₄: basic properties

2D perovskite

Unconventional superconductivity

- Pairing mechanism?
- Order parameter?
- FM-AF fluctuations?

Rice & Sigrist, JPCM 7, L643 (1995)

Lattice-magnetism interplay Orbital degrees of freedom

 Sr_2RuO_4 : 2D Fermi Liquid (ρ_c/ρ_{ab} =850)

- **Ca₂RuO₄**: insulating **Anti-FerroMagnet**
- **SrRuO₃** : metallic **FerroMagnet**

Low-Energy Electronic structure of Sr₂RuO₄

► Band structure calculation: $3 t_{2g}$ bands crossing E_F → 3 sheets of FS $\begin{cases} \alpha \text{ (hole-like)} \\ \beta \text{ and } \gamma \text{ (electron-like)} \end{cases}$

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL **85**, 5194 (2000) *K.M. Shen et al., PRB* **64**, 180502R (2001)

Intensity (a.u.)

0.2 0.0 Binding Energy (eV)

Surface reconstruction of cleaved Sr₂RuO₄

R. Matzdorf et al., Science 289, 746 (2000)

Rotation of the RuO₆ octahedra around the c axis

Surface electronic structure of Sr₂RuO₄

On samples cleaved at 180 K the **surface**-related features are suppressed

±10 meV

E_F mapping Cold cleave T=10 K

Hot cleave T=180 K

Bulk electronic structure of Sr₂RuO₄

Х

Dispersion of the bulk electronic bands

Experiment compares well with LDA+U calculations

A. Liebsch & A. Lichtenstein, PRL 84, 1591 (2000)

"Classic Low-temperature" Superconductors

Superconductivity can only be seen on low energy scales and needs high resolution!

High-Temperature Superconductors

VOLUME 70, NUMBER 10 PHYSICAL REVIEW LETTERS

8 MARCH 1993

Anomalously Large Gap Anisotropy in the a-b Plane of Bi₂Sr₂CaCu₂O_{8+ b}

Z.-X. Shen,^{(1),(2)} D. S. Dessau,^{(1),(2)} B. O. Wells,^{(1),(2),(a)} D. M. King,⁽²⁾ W. E. Spicer,⁽²⁾ A. J. Arko,⁽³⁾ D. Marshall,⁽²⁾ L. W. Lombardo,⁽¹⁾ A. Kapitulnik,⁽¹⁾ P. Dickinson,⁽¹⁾ S. Doniach,⁽¹⁾ J. DiCarlo,^{(1),(2)} A. G. Loeser,^{(1),(2)} and C. H. Park^{(1),(2)}

Many Body effects in the Quasiparticle Dispersion

Valla et al., Science 285, 2110 (1999)

Mechanism for High-T_c { Magnetic fluctuations ? Electron-phonon coupling ?

Many Body effects in the Quasiparticle Dispersion

Lanzara et al., Nature 412, 510

Electron Momentum

Mechanism for High-T_c { Magnetic fluctuations ? Electron-phonon coupling ?

Conclusions

ARPES results from Sr₂RuO₄

- FS in unprecedented detail
- Fermi velocity and effective mass
- Investigate the issue of surface FM
- Superconducting (d-wave) gap
- Many-body effects in the QP dispersion

ARPES is a **powerful tool** for the study of the electronic structure of complex materials

A. Damascelli *et al.*, PRL **85**, 5194 (2000); PRL **87**, 239702 (2001) K.M. Shen, A. Damascelli, *et al.*, PRB **64**, 180502(R) (2001)

For a review article see:

A. Damascelli, Z. Hussain, and Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

