State-of-the-Art ARPES: Momentum-Space Microscopy of Sr₂RuO₄ and Bi2212

Andrea Damascelli

Department of Physics & Astronomy University of British Columbia Vancouver, B.C.

Group: ARPES on Complex Systems

LLL minimer and the state of th

S. Wang B. Lau S. Hossain J. Mottershead K. Ajdari A. Damascelli

Advanced Materials & Process Engineering Laboratory

Previous Collaborators

• ARPES at Stanford:

K.M. Shen, D.H. Lu, D.L. Feng, N.P. Armitage, F. Ronning, C. Kim, Z.-X. Shen

• Band Structure Calculations (NRL, Washington):

I.I. Mazin, D.J. Singh

Samples:

• Sr₂RuO₄

S. Nakatsuji, T. Kimura, Y. Tokura, Z.Q. Mao, Y. Maeno

• $Bi_2Sr_2CaCu_2O_{8+\delta}$

H. Eisaki, R. Yoshizaki, J.-i. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O'Donnell, J.N. Eckstein

- YBa₂Cu₃O_{7-δ}
 D.A. Bonn, R. Liang, W.N. Hardy, A.I. Rykov, S. Tajima
- Nd_{2-x}Ce_xCuO₄
 Y. Onose, Y. Taguchi, Y. Tokura; P.K. Mang, N. Kaneko, M. Greven
- Ca_{2-x}Na_xCu₂O₂Cl₂
 L.L. Miller, T. Sasagawa, Y. Kohsaka, H. Takagi

Outline

- Electronic structure of complex systems
- State-of-the-Art ARPES: the essentials
- ► ARPES on Sr₂RuO₄
 - Bulk & surface electronic structure
 - Surface **Ferromagnetism**?
- ► ARPES on **Bi₂Sr₂CaCu₂O_{8+δ}**
 - Bilayer splitting of the electronic structure
 - Signatures of **superfluid density**
- Conclusions and discussion

Strongly Correlated Electron Systems

- Kondo
- Mott-Hubbard
- Heavy Fermions
- Unconventional SC
- Spin-charge order
- Colossal MR

Probing the Low-Electronic Structure

The Photoelectric Effect

FIRST EXPERIMENTAL EVIDENCE FOR QUANTIZATION OF LIGHT!

Velocity and direction of the electrons in the solid

Many properties of a solids are determined by electrons near E_F (conductivity, magnetoresistance, superconductivity, magnetism)

Only a narrow energy slice around E_F is relevant for these properties (~kT=25 meV at room temperature).

Allowed electronic states

Repeated-zone scheme

Interaction effects between electrons : "Many-body Physics"

Many-body effects are due to the interactions between the electrons and each other, or with other excitations inside the crystal :

1) A "many-body" problem : intrinsically hard to calculate and understand

2) Responsible for many surprising phenomena :

Superconductivity, Magnetism, Density Waves,

Angle-Resolved Photoemission Spectroscopy

<u>Electrons in</u> <u>Reciprocal Space</u>

Angle-Resolved Photoemission Spectroscopy

Photoemission intensity: $I(k,\omega)=I_0 |M(k,\omega)|^2 f(\omega) A(k,\omega)$

Single-particle spectral function

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k}, \omega)}{[\omega - \epsilon_{\mathbf{k}} - \Sigma'(\mathbf{k}, \omega)]^2 + [\Sigma''(\mathbf{k}, \omega)]^2}$$

$\Sigma(\mathbf{k},\omega)$: the "self-energy" - captures the effects of interactions

Angle-Resolved Photoemission Spectroscopy

Parallel multi-angle recording

- Improved energy resolution
- Improved momentum resolution
- Improved data-acquisition efficiency

	∆E (meV)	$\Delta heta$
past	20-40	2°
now	2-10	<i>0.2</i> °

ARPES: advantages and limitations

Advantages

• Direct information about electronic states!

- Straightforward comparison with theory little or no modelling.
- High-resolution information about
 BOTH energy and momentum
- Surface-sensitive probe
- Sensitive to "many-body" effects
- Can be applied to small samples (100 $\mu m~x$ 100 $\mu m~x$ 10 nm)

Limitations

Not bulk sensitive

- Requires clean, atomically flat surfaces in **ultra-high vacuum**
- Cannot be studied as a function of pressure or magnetic field

Sr₂RuO₄: basic properties

2D perovskite

Unconventional superconductivity

- Pairing mechanism?
- Order parameter?
- FM-AF fluctuations ?

Rice & Sigrist, JPCM 7, L643 (1995)

Lattice-magnetism interplay Orbital degrees of freedom

- Sr_2RuO_4 : 2D Fermi Liquid (ρ_c/ρ_{ab} =850)
- Ca₂RuO₄: insulating Anti-FerroMagnet
- **SrRuO₃** : metallic **FerroMagnet**

Low-Energy Electronic structure of Sr₂RuO₄

 $\blacktriangleright \text{ Band structure calculation: } \mathbf{3} \mathbf{t}_{2g} \text{ bands crossing } \mathbf{E}_{\mathsf{F}} \\ \blacksquare 3 \text{ sheets of FS} \begin{cases} \alpha \text{ (hole-like)} \\ \beta \text{ and } \gamma \text{ (electron-like)} \end{cases}$

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.H. Lu et al., PRL 76, 4845 (1996)

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL 85, 5194 (2000)

Fermi Surface Topology of Sr₂RuO₄

ARPES : circa 1996

D.H. Lu et al., PRL 76, 4845 (1996)

D.J. Singh, PRB 52, 1358 (1995)

ARPES : present day

A. Damascelli et al., PRL 85, 5194 (2000)

Surface instability

Band folding

Surface reconstruction of cleaved Sr₂RuO₄

R. Matzdorf et al., Science 289, 746 (2000)

Rotation of the RuO₆ octahedra around the c axis (9°)

Surface electronic structure of Sr₂RuO₄

On samples cleaved at 180 K the surface-related features are suppressed

E_F mapping ±10 meV Cold cleave T=10 K

Hot cleave T=180 K

Bulk electronic structure of Sr₂RuO₄

What do we learn about the **bulk** electronic structure?

- FS topology
- Fermi velocity
- Effective mass

I.I. Mazin *et al.*, PRL **79**, 733 (1997)

Dispersion of the bulk electronic bands

Experiment compares well with LDA+U calculations

A. Liebsch & A. Lichtenstein, PRL 84, 1591 (2000)

Surface Ferromagnetism?

Surface Reconstruction + Surface Ferromagnetism

R. Matzdorf, Z. Fang, et al., Science 289, 746 (2000)

First principle calculations

FM surface

Exchange splitting: **500 meV** Magnetic moment: **1.0** μ_{B}/Ru

Z. Fang & K. Terakura, PRB 64, 20509 (2001)

Surface Ferromagnetism?

Surface Reconstruction + Surface Ferromagnetism

R. Matzdorf, Z. Fang, et al., Science 289, 746 (2000)

Spin-split Fermi-level crossings of the electronic bands in **Sr**₂RuO₄

P.K. de Boer *et al.*, PRB **59**, 9894 (1999)

Where to look for spin-split electronic bands in Sr₂RuO₄?

Evidence for surface FM ?

Band structure results

K.M. Shen, A. Damascelli et al., PRB 64, 180502(R) (2001)

High-Tc Superconductivity

Liechtenstein et al., PRB 54, 12505 (1996)

One FS Sheet

Liechtenstein et al., PRB 54, 12505 (1996)

Fermi Surface with bilayer splitting

Liechtenstein *et al.*, PRB **54**, 12505 (1996)

Fermi Surface with bilayer splitting

Overdoped Bi2212 Normal state

Feng, Damascelli et al., PRL 86, 5550 (2001)

Feng, Damascelli *et al.*, PRL **86**, 5550 (2001)

Feng, Damascelli et al., PRL 86, 5550 (2001)

SC signatures from ARPES on Bi₂Sr₂CaCu₂O_{8+δ}

Feng, Damascelli et al., Science 289, 277 (2000)

SC signatures from ARPES on Bi₂Sr₂CaCu₂O_{8+δ}

Coherent QP weight

Feng, Damascelli et al., Science 289, 277 (2000)

SC signatures from ARPES on Bi₂Sr₂CaCu₂O_{8+δ}

Pairing d-wave SC Gap Phase coherence Coherent QP weight

Feng, Damascelli et al., Science 289, 277 (2000)

SC signatures from ARPES on $Bi_2Sr_2CaCu_2O_{8+\delta}$

Overdoped Bi2212 Tc=84K

Feng, Damascelli et al., Science 289, 277 (2000)

SC signatures from ARPES on Bi-Cuprates

Hole doping level x

Feng, Damascelli et al., PRL 88, 107001 (2002)

Coherent transition

Well defined Quasi Particles may be formed only at large doping and/or below Tc

Feng, Damascelli et al., PRL 88, 107001 (2002)

QP lifetime catastrophe

The coherence factor Z does not vanish above Tc

is the reduction of lifetime that broadens the QP out of existence

Norman et al., PRB 63, 140508 (2001)

2D-3D Crossover in Sr₂RuO₄ at T=130K ?

A. Damascelli et al., JESRP 114-116, 641 (2001)

Conclusions

ARPES results from complex systems

- Bands and FS in unprecedented detail
- Fermi velocity and effective mass
- Superconducting (d-wave) gap
- Many-body effects (superfluid density)
- Surface FM (nanostructured materials)

ARPES is a powerful tool for the study of the electronic structure of complex systems

For a review article see:

A. Damascelli, Z. Hussain, and Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

For additional material see:

www.physics.ubc.ca/~QuantMat/ARPES.html