
Black-body Radiation

1. Introduction

All surfaces at a finite temperature emit electromagnetic radiation, but at room temperature this 
energy emission is weak and almost entirely distributed in the far infrared spectrum. With increasing 
temperature the total radiated power increases rapidly, proportional to the fourth power of the absolute 
temperature (Stefan's Law).

The fundamental concept is of cavity radiation: the isotropic distribution of intensity versus 
wavelength in a cavity whose walls are at a uniform temperature T (Kelvin). The radiation field is in 
thermal equilibrium with the walls of the enclosure and the distribution of energy as a function of 
wavelength is given by the Planck Radiation Law in which each of the parameters is a well-known 
physical constant,
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where the spectral intensity Iλ is such that 
the power per unit area is Iλdλ (W/m2). The total 
power (energy per second) falling on area ∆ A is 
A∫ I d  . The areas involved here may be 

either real areas of the cavity walls or one side of a 
mathematically postulated area within the space of 
the cavity. The spectral intensity given by this 
equation peaks at a particular wavelength (see 
Figure 1), and this wavelength is inversely 
proportional to the temperature in Kelvin (Wien's 
Law). From everyday experience we are aware that 
different surfaces made from different materials 
radiate 'heat' at different rates; dull black surfaces 
radiate more effectively than polished and shiny surfaces. However, good radiators are also good 
absorbers - and therefore poor reflectors. You might have thought that a cavity made from dull black 
material would have a higher spectral intensity than a shiny cavity at the same temperature, since the 
former surface radiates more power. But when you 'look' at the surface (or point an instrument to 
take a measurement), the total radiation that you 'see' or measure is the sum of the emitted and 
reflected parts. A dull black surface emits a lot but reflects little; for a shiny surface this is reversed. 

In fact, the spectral intensity is the same, 
regardless of the material of the cavity walls 
exactly as shown by the equation above - 
and there is a good thermodynamic 
argument to support this, based on the 
Second Law. In fact the spectral intensity is 
a function of T only  , which makes it a 
property worthy of study in 
thermodynamics.

Real surfaces emit radiation at rates 
that are less than that given by (eq. 1), and 
the ratio of the radiated spectral intensity to 
Iλ is called the emissivity   e (<1). A 'perfect 

radiator' (e=1) is also a perfect absorber that gives no reflected radiation; the emitted radiation for 
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Figure 2: Cavity at temperature T absorbing like a 
   black-body.



the perfect absorber is given by (eq. 1), and this explains the other term used for Iλ, 'Black-Body 
Radiation  '.

The classical theory of radiation treats the normal modes of the waves in the cavity as each 
having energy kT (given by the Law of Equipartition of Energy). At a given temperature this 
predicts values of Iλ that are reasonably accurate for long wavelengths, but for short wavelengths the 
theory leads to the 'ultra-violet catastrophe' - Iλ tends to infinity as λ tends to zero because the 
number of available states also tends to infinity. The classical statistics of Boltzmann has to be 
replaced by the appropriate quantum version in order to get the correct result of equation 1.

In 1899 Planck arrived at eq. 1 through a model in which the cavity wall was supposed to be 
made of quantum oscillators with discrete energy levels. Einstein interpreted the success of the 
model literally, and so 'invented' the photon, the quantum of radiation energy.  It is ironic that 
Planck, the man who actually discovered quantum theory, refused to believe in it to his dying day, 
thinking that some explanation from classical physics would eventually vindicate his strange 
success. With the benefit of hindsight it seems surprising that the quantum was discovered through a 
correction to a classical theory involving a continuous energy distribution; now it seems self-evident 
that spectral lines (well-known at the time) should have been seen as obvious markers of discrete 
quantum states. But the Bohr theory of the atom was still fifteen years away when Planck published 
his results.

As explained above, cavity radiation is a proper subject for thermodynamic study. To 
make this system available for experimentation with detectors that are not subjected directly to the 
high temperatures of the cavity it is convenient to make a small hole in the cavity wall and observe 
the radiation that is emitted. The radiation falling on the orifice on the inside (and transmitted 
outside)
should be close to ideal cavity radiation. Notice that in principle the hole is indeed an almost perfect 
'BlackBody' absorber since any radiation that falls on it from the outside, goes into the cavity and 
must be essentially absorbed after multiple reflections from the internal walls before any significant 
part of it emerges again from the orifice.

Apparatus:

In the present experiment the 'cavity' is a 12-mm hole bored in a 25-mm steel rod placed axially in the 
electric furnace. The detector 'looks' along the axis into this hole, and though this is not an ideal situation 
(since the orifice is not small in comparison with the cavity dimensions so that the radiation loss may be 
significant), it is at least a reasonable attempt to simulate true cavity radiation. A chromel-alumel 
thermocouple monitors the temperature of the furnace.  You may notice that the thermocouple reference 
junction is actually three junctions.  You should be able to explain why.

The detector is a phototransistor 
that is connected to a digital 
voltmeter (DVM). The radiation 
input is filtered by an interference 
filter that transmits only a very 
narrow wavelength band around 
751.5 nm; a graph of the 
transmitted spectrum is provided. 
The output of the photodiode is a 
very non-linear function of the 
incident intensity, and is calibrated 
later (step 5). For this purpose 
there is a mounted filter wheel that 
you can use to attenuate the light 
in known steps.
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Prelab Questions:

1. Tables are available to calibrate the chromel-alumel thermocouple used to measure temperature 
in this experiment. Tables are in the lab or found in several handbooks, including chemistry’s 
CRC Handbook and are also readily found on the web. Refer to one of these tables and use the 
data to fit to a polynomial in the temperature range of your experiment (about 800 to 1100 C). 
This fit to the calibration table will be useful in the performance of your experiment and the 
subsequent analysis.

2. Write a program, or use a spreadsheet to calculate Iλ and plot the values versus wavelength λ 
as shown in Fig. 1. Next, plot Iλ versus temperature at several, fixed λ, including a plot at the 
measurement wavelength that will be used in this experiment. Show that over some range of 
temperatures, ln Iλ is nearly linear when plotted vs 1/T. Analytically, what is the condition on 
the parameters in Eq. 1 that gives this linear behaviour in a semi-log plot? Show how such a 
plot can be used to determine the value of the fundamental constant h.

Procedure:
1. Switch the furnace control to 'high' if this has not been done already; warm-up time is about 

1.5 hours. 
2. Turn on the water-cooling to the radiation detector to give a strong flow; the flow must be 

unchanged throughout the experiment, including the detector calibration (step 4). Direct the input-
tube of the detector into the end of the furnace.  If the stainless steel calibration adapter was left on 
the input tube, remove it first. The furnace temperature is to be allowed to reach 1100°C, but no 
higher (you can destroy the furnace elements).

3. Two multimeters are used to measure the emf of the thermocouple and the signal from the 
photodetector. These voltages should be recorded at 20 second intervals during the main part of the 
experiment.  You can program the multimeters with a trigger delay of 20 s so they will 
automatically take a new measurement every 20 s.  It would be a good idea to make absolutely 
certain that you are confident in the functioning of the meters before starting your data 
collection as this experiment takes a fair bit of time to run.  You have a couple of options for 
recording the data.  You can write down each measurement as it is made (requires you take 
note every 20 s), or you can set the multimeters to store the measurements – recall our 
capacitor discharge experiment.  If you set the multimeters to store the measurements, don't 
forget that you need to explicitly set the 'reading store' field to On each time you start. You can 
use the computers supplied  to read the measurements out of the multimeter.  There is a 
handout at the bench on  how to do this.  Ensure that the fiber-optic coming out of the 
photometer is seated
properly in the photometer before making measurements!

4. When the furnace temperature reaches 1100°C turn off the power. Start the data recording and continue to 
measure down to 800° C or so.

5. Calibrate the photometer. To do this, screw the stainless steel adapter into the front of the photometer 
housing and point the detector towards the 100 W incandescent lamp and adjust the position so that 
the DVM reading is slightly greater than the maximum reading in your data-set from step 4 (so that 
the calibration range corresponds roughly to the range observed in the experiment). The photometer 
calibration is done relative to the arbitrary intensity of the lamp (for the 751.5 nm pass-band).  There 
are 11 sections on the stepped circular filter – the first (wide) section is uncalibrated compared to the 
others, but the remaining 10 sections have optical densities that increase in steps of 0.2, meaning the 
intensity of light transmitted decreases by a factor of 10-0.2 = 0.63 in going from one step to the next 
so that I/I0 = 0.63n where n is the number of the filter section.  Taking the natural log, ln(I/I0) = n ln 
0.63. Plot ln(I/I0) vs. the voltage.  By regression analysis you can express the dependent variable ln(I/I0) in 
terms of the observed voltmeter readings. For this 'calibration' is it appropriate to use a linear regression 
or some higher order, or some other function?

6. Using the calibration of step 5, you can now construct a plot of ln Iλ versus 1/T and thus determine h.
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