
Fitting Parameters in a Differential
Equation With a Non-Analytical Solution

Mathew Smith 29-Jan-2005
In[64]:= Remove "Global` "

Off General::"spell"
Off General::"spell1"

Graphics`

Often differential equations do not have analytical solutions, however such equations can be solved using numerical
techniques. As was shown in the "Differential Equations in Mathematica" notes the NDSolve command in Mathematica
can be used to solve differential equations numerically. For example consider the equation:

if: t < 3 df
dt = 10 - f,

if: t 3 df
dt = -f

where f = 5 at t = 0.

This can be solved in Mathematica using the following command:

In[37]:= sol NDSolve f' t If t 3, 10 f t , f t , f 0 5 , f, t, 0, 5 1

Out[37]= f InterpolatingFunction 0., 5. ,

The result is an interpolating function which has been fitted to the numerical data. The function is only valid in the
specified range of the independant variable i.e for 0 t 5. We can define a function fn(t) that is equal to the polynomial
using the following command:

In[38]:= fn t_ f t . sol

Out[38]= InterpolatingFunction 0., 5. , t

And then plot the result using:

NDSolve tut.nb 1

Printed by Mathematica for Students

In[39]:= p1 Plot fn t , t, 0, 5 ;

1 2 3 4 5

2

4

6

8

Imagine we have conducted an experiment where we have measured f as a function of t with the following results:

In[68]:= texp 0.5, 1.1, 1.5, 2.1, 2.3, 3.1 ;
fexp 6.2, 8.1, 8.8, 8.3, 6.8, 2.9 ;

In[81]:= p2 ListPlot Transpose texp, fexp ,
PlotStyle AbsolutePointSize 6 , Frame True, Axes False,
FrameLabel "t", "f" , TextStyle FontSize 20, FormatType Bold ,
RotateLabel False, ImageSize 400, 300 ;

0.5 1 1.5 2 2.5 3
t

3

4

5

6

7

8

f

We can compare our numerical solution for f as follows :

NDSolve tut.nb 2

Printed by Mathematica for Students

In[43]:= Show p2, p1 ;

0 1 2 3 4 5
t

0

2

4

6

8

f

The solution clearly isn't such a great fit. The goodness of the fit can be characterised by calculating the sum of the square
differences between the solution and the data :

R = fexp f t 2

To do this first we evaluate our numerical function at the experimental values of t:

In[44]:= fn1 fn t . t texp

Out[44]= 6.96735, 8.33564, 8.88435, 9.38772, 9.49871, 8.82313

Then we calculate find the difference between the experimental values and values from the model and square them:

In[45]:= df fexp fn1 2

Out[45]= 0.588821, 0.0555285, 0.007115, 1.18313, 7.28301, 35.0834

Finaly we sum the numbers using:

In[46]:= R Apply Plus, df

Out[46]= 44.2011

These comands can be neatly bundled together to give:

In[47]:= R Apply Plus, fexp f t . sol . t texp 2

Out[47]= 44.2011

NDSolve tut.nb 3

Printed by Mathematica for Students

Imagine that we decide to modify our initial differential equation such that we have:

if: t < p df
dt = 10 - f,

if: t p df
dt = -f

Where p has to be deduced experimentally. Also we realise that in our haste to do the experiment we forgot to record the
initial value for f at t = 0, lets call this q, so we don't know that constant either. How would we go about finding values
for these? One way to do this would be to guess at initial values for p and q, then use NDSolve to find the solution for f(t)
and then calculate the sum of the square differences. One could then proceed to calculate the least squares difference
iteratively over a large range of values of p and q until the minimum in the sum of the square difference is found. Fortunat-
ley for us we can write a short piece of code in Mathematica that will do this for us. We define the function sse(p,q) as
follows:

In[71]:= sse p_?NumberQ, q_?NumberQ : Block sol, f , sol
NDSolve f' t If t p, 10 f t , f t , f 0 q , f, t, 0, 5 1 ;
Apply Plus, fexp f t . sol . t texp 2

The exact syntax is perhaps a little confusing but what the function is doing is actually quite simple. The _?NumberQ
following the letters p and q signifies that the function needs numerical inputs for both p and q. The fuction is then
defined as a block, this allows us to combine Mathematica commands which will all be evaluated together. The declara-
tion {sol,f} tells Mathematica that the block contains two seperate functions; sol and f. The function then evaluates the
NDSolve command to find f(t) with the supplied values of q and p before calculating the least squares difference between
f(t) and the experimental values of f. The semi-colon after the NDSolve comand supresses its output so that the function
just returns the least squares difference. For example if we evalute the function for p =3 and q=5 we get:

In[72]:= sse 3, 5

Out[72]= 44.2011

Which is the same as we calculated above.

The FindMinimum in Mathematica command uses numerical methods to find the minimum of a function. We can use it
to find the minimum value of sse(p,q) in the range 2 p 3 and 4 q 5 as follows:

In[73]:= bf FindMinimum sse p, q , p, 2, 3 , q, 4, 5

Out[73]= 0.0743735, p 1.9962, q 3.93581

The results tell us that the minimum occurs at p = 1.9962 and q = 3.93581. We can now find f(t) at this value and plot it
against our data:

In[74]:= pf bf 2, 1, 2

Out[74]= 1.9962

In[75]:= qf bf 2, 2, 2

Out[75]= 3.93581

NDSolve tut.nb 4

Printed by Mathematica for Students

In[77]:= solbf
NDSolve f' t If t pf, 10 f t , f t , f 0 qf , f, t, 0, 5 1

Out[77]= f InterpolatingFunction 0., 5. ,

In[79]:= p3 Plot f x . solbf, x, 0, 5 ;

1 2 3 4 5

2

4

6

8

In[83]:= Show p2, p3 ;

0 1 2 3 4 5
t

0

2

4

6

8

f

The result seems to fit the data very well.

NDSolve tut.nb 5

Printed by Mathematica for Students

