
Physics and Astronomy Dept. WH
UBC 01/10/03
SCUBA-2 Project SC2/ELE/S8xx/xxx
 Version 4

CCFPGAConfig.doc Page 1 of 4

Clock Card Dual Configuration Tech-Note

1. Summary
This document discusses the configuration scheme to be adopted for the Clock Card (CC) FPGA in the
Multi-Channel Electronics (MCE).

2. References
[1] ‘Multichannel Electronics Block Diagram’, SC2_ELE_S560_001.
[2] ‘Stratix FPGA Configuration’, SC2/ELE/S500/21.
[3] ‘MCE Engineering Description’, SC2/ELE/S565/000
[4] ‘AN 217: Using Remote System Configuration with Stratix & Stratix GX Devices’, AN-217-2.1,
Altera Corp.
[5] ‘Multichannel Electronics Requirements and Recommendations’, SC2/ELE/S500/11.
[6] ‘FPGA Configuration Block Diagram’, SC2_ELE_S560_003.
[7] ‘Clock Card Configuration Scheme Schematic Capture’ SC2/ELE/S565/103/001
[8] ‘AN 208: Configuring Stratix & Stratix GX Devices’, AN-208-2.2, Altera Corp
[9] ‘Stratix FPGA Family Data Sheet’, DS-STXFAMLY-3.0, Altera Corp.
[10] ‘ByteBlasterMV Parallel Port Download Cable Data Sheets’, DS-BYTBLMV-3.3, Altera Corp.
[11] ‘Using the JAM Language for ISP & ICR via an Embedded Processor’ Altera Application
Note 088
[12] ‘CC Dual-EPC16 Configuration Block Diagram’, SC2_ELE_S565_003_000

3. Introduction
Stratix FPGAs can be configured in a variety of different ways, as discussed in [2]. Using the modes
that are available to us, it is our intention to implement a configuration scheme which is robust – one
with which the MCE can always recover from an internal hardware glitch or firmware bug.

This document details the particular configuration scheme which has been chosen for the CC. We
intend on using two configuration devices on the CC – one to hold an application configuration for
normal operation at JCMT, and another to hold a stable factory configuration which the CC FPGA can
revert to if the application configuration encounters difficulties.

4. Clock Card Dual-Configuration Capability
The intention for the CC is for it to have a non-corruptible factory configuration which it can always
fall back upon to reload a working application configuration from its RT-Linux PC. There are three
ways to achieve this goal:

1) Run the CC Stratix FPGA in Remote FPP Configuration Mode [4], and use the PGM[2..0]
signals with external some logic to switch between the two EPC16s.

2) Run the CC Stratix FPGA in Local FPP Configuration Mode [4], still using the PGM[2..0]
signals and external logic to switch between the two EPC16s.

3) Run the CC FPGA in Standard or Stratix Remote/Local [4] FPP Configuration Mode, and
implement external logic which is independent of the PGM[2..0] signals to switch between the
two EPC16s.

The Stratix FPGAs have a Remote/Local Configuration Mode [4] using a single EPC16 which
implements much of what we want for a dual factory/application configuration, except the factory
configuration page in a single EPC16 may still become corrupted when programming one of the

application pages. The first two solutions, above, hi-jack the PGM[2..0] signals to switch between two
EPC16s. This would work as follows:

4.1 Using PGM[2..0] Signals to Select Between EPC16s
The CC FPGA would be configured through hardware to be in Remote or Local FPP system
configuration mode (i.e. RUnLu = 1 for Remote or 0 for Local, MSEL[2..0] = 100; refer to [8] p.3). In
Remote/Local FPP mode, the CC can select which of 8 configurations to load using its PGM[2..0] pins.
The configuration interface between the FPGA and the EPC16 includes the following pins:

EPC16 Stratix
DATA[7..0] DATA[7..0]
DCLK DCLK
nCS CONF_DONE
nINIT_CONF nCONFIG
OE nSTATUS
PGM[2..0] PGM[2..0]

For details on the requirements for the intervening logic between the CC FPGA and its two
configuration devices on the pins above, see [4] and [8].

We would add some external logic to force the use of the factory EPC16 when the Stratix FPGA
requests configuration from page 0 (the default or ‘factory’ page). Other pages would switch to the
application EPC16. The Stratix FPGA contains all the mechanisms to support multiple configurations,
including a programmable user watchdog timer. This watchdog timer must be reset in the main
operating configuration at a rate determined by the factory configuration. If the watchdog timer is not
reset and allowed to trigger, either due to a firmware fault or intentionally, the Stratix will request
reload of the factory configuration from the EPC16 into the clock card Stratix device.

Choosing Remote Configuration Mode (RUnLu = 1) causes the factory configuration to load on power-
up. The factory configuration would contain the configuration engine and other essential services.
When the CC receives a command from the RT-Linux computer to switch to the application
configuration, the factory firmware enables the watchdog timer and triggers reconfiguration of the
Stratix FPGA using the application configuration.

Choosing Local Configuration Mode (RUnLu = 0) causes the application configuration to load on
power-up, saving the time to load first the factory then the application configuration. The idea behind
this is that the application configuration would be a super-set of the factory configuration, with the
factory configuration being just a fall-back. Note that the Stratix watchdog timer is disabled in Local
Configuration Mode, and the factory configuration will only be loaded if the application configuration
is corrupted (i.e. generates a CRC error). If the configuration engine (which permits firmware
upgrades from the RT-Linux computer) is not contained in the application configuration, then Local
Configuration Mode cannot be used.

In order to keep the paging capability of Remote/Local Configuration Mode, we must retain the
selection of EPC16 pages using the FPGA’s PGM[2..0] signals. For this to work, the factory
configuration must fit in one page of the EPC16, and the application configuration must fit within the
remaining seven pages. If a large Stratix FPGA is used (so that its configuration cannot fit within one
page of the EPC16), then just the FPGA’s PGM0 signal may be used to switch between two EPC16s
which have their PGM[2..0] all tied low, foregoing the paging capability.

4.2 Using Dedicated Logic to Switch Between EPC16s (refer to [12])
The third solution to achieve a non-corruptible factory configuration adopts an EPC16-switching
strategy that is completely independent of the PGM[2..0] signals and the Stratix FPGA’s remote-
configuration capabilities. The Stratix FPGA may be configured in hardware (via is RUnLu and
MSEL[2..0] signals) for Standard or Remote/Local Configuration Mode [4] without any difference to
the EPC16-switching circuitry. (In fact, this solution works with non-Stratix FPGAs which may not
have Remote/Local Configuration Mode.) The factory and application EPC16s may be independently

CCFPGAConfig.doc 2 of 4

CCFPGAConfig.doc 3 of 4

partitioned (in terms of pages, FLASH usage for NIOS or other processors, etc.) however the FPGA
design sees fit. The strategy switches whole EPC16 devices, and is essentially transparent to the FPGA
except that the FPGA can choose which EPC16 its next reconfiguration data comes from.

Document [12] illustrates one way to implement the dual-configuration mechanism. In that document,
the circuit provides the following capabilities:

• The CC FPGA’s “program” may initiate reconfiguration into either factory or application
mode. Using the Stratix FPGA’s built-in Remote/Local Configuration Mode [4] capabilities,
a specific page from the active EPC16 may be selected.

• A ‘configuration reset’ (initiated by the Power Card via the BRst signal, see [3]) will always
reconfigure the CC FPGA from the factory configuration device.

• An INIT_CONFIG JTAG command to the application configuration device will force the CC
FPGA into application mode.

4.2.1 Circuit Design
The switching of the FPGA between two EPCs is straightforward with the exception of the
OE/nSTATUS signal. This signal is an open-drain signal, and it is also bidirectional. The EPC will
hold OE low to signal to the FPGA that it is about to be configured. The FPGA may also pull
nSTATUS low to indicate to the EPC that it wishes to be configured. Additionally, an external device
may hold OE low to defer the EPC's configuration sequence.

The use of FETs preserves the open-drain nature of the OE/nSTATUS signal. If we consider the paths
from the Q/nQ outputs of the flip-flop to the OE pins for the moment, the inactive EPC must be held
off by holding its OE pin low. This is accomplished by connecting an open-drain FET, gated by the Q
and nQ outputs of the flip-flop, to each EPC16’s OE pin. Additionally, the FPGA must be able, with
its nSTATUS signal, to pull down the EPC16s' OE pin, and this is accomplished via the Schottky
diodes labelled "optional" (a 74LVC4066 may be used in place of the FET_Schottky diod
combination); the EPC that is inactive is already held off and the diodes provide that only the low level
provided by the nSTATUS signal reaches the active EPC16's OE pin. Finally, the active EPC (and
only the active one) must be able to pull down the FPGA's nSTATUS pin, and the series-pass FETs
provide this capability. Think of them as another open-drain device stacked upon the EPC's internal
one, similar to a cascade configuration.

Using so-called Digital FETs (e.g. FDC6030N, from Fairchild Semiconductor) having VGS(th) ≤ 1.5V,
the FETs will fully enhance under all conditions in a 3.3V circuit. In fact, they will enhance and
bypass the optional Schottky diodes even when it is the FPGA pulling down on nSTATUS, because
their body diodes (and/or the optional Schottky diodes) will initially conduct until the FET source
becomes low enough that the FET's entire channel enhances. Note that, in order to prevent the circuit
from becoming self-latching, the pull-down current must be sunk by either the OE pin of the EPC or
the nSTATUS pin of the FPGA. We cannot use tri-state buffers such as a 74xx125/126 because the
output low-level (sunk by the buffer's internal low-side FET) will feed back to its input and become
self-reinforcing; the circuit will stay in a low state even if both the EPC and FPGA release their
OE/nSTATUS pins.

The on-board power-on-reset (POR) circuit is both good practice and required in this design.
Originally, the BRst signal (originally an active-low signal) from the Power Card could qualify that all
power supply voltages were within specification and stable; the active-low nature of the original BRst
signal allowed for reset to be asserted even before the power supply voltages had all come up to full
voltage. However, due to noise, isolation, and benign-failure requirements, linear regulators were
added to each card. Therefore, the qualification of "power-good" can only be done on-board each card,
past the linear regulator. Having an on-board POR circuit also affords some degree of fault-tolerance
with respect to the BRst circuits themselves.

Since we are implementing functionality to switch between EPC16s independently of the Stratix
FPGA’s Remote/Local Configuration feature, we must provide a separate watchdog that is capable of
resetting the selection circuitry to a known state (that which selects the Factory EPC). In general, the
use of an external watchdog also guarantees watchdog functionality in the case of a mis-configured on-
chip watchdog or even catastrophic failure of the FPGA. The watchdog can reset other circuitry

CCFPGAConfig.doc 4 of 4

critical to the health of the cryostat, for example, even if the FPGA is destroyed. For an in-depth
discussions of the merits of external watchdogs, and of proper watchdog designs, please refer to:

http://www.embedded.com/design_library/OEG20021211S0032
http://www.embedded.com/story/OEG20030115S0042
http://www.embedded.com/design_library/OEG20030220S0037

The 74LVC541 tri-state bus drivers are required because the EPC16s' DATAx signals are always
driven.

The DCLK signals may be combined simply using an OR gate, because the inactive EPC idles its
DCLK output low.

The PGM[2..0] signals are connected between the FPGA and the EPC16s to support Remote/Local
Configuration Mode [4]. If the FPGA is not (MSEL2 = 0) configured for Remote/Local Configuration,
then the PGM[2..0] signals from the FPGA are general I/O signals and should be pulled down with
resistors strong enough to overcome the FPGA’s pull-ups in case they are enabled.

4.2.2 Circuit Operation
A power-on reset or BRst reset will reset the flip-flop to use the Factory EPC. The low-going pulse on
the OE/nSTATUS signal will also initiate a configuration sequence.

A private JTAG command to the Application EPC will assert its nINIT_CONFIG signal, setting the
flip-flop to use the Application EPC. The FPGA, upon seeing its nCONFIG input become active,
request reconfiguration through its nSTATUS and CONFIG_DONE signals. nPOR is not asserted for
this type of reconfiguration.

The firmware in the FPGA may initiate a reconfiguration by setting up the desired level on its
nEPC_SEL output and asserting the nRECONF output. In combination with the Stratix Remote/Local
Configuration Mode, the FPGA firmware designer may reconfigure from page 0 of either the Factory
or Application EPC using nRECONF, then reconfigure from another page within the selected EPC
using the Stratix Remote Update Control Register. nPOR is not asserted for this type of
reconfiguration.

In any case, should the active FPGA configuration not reset the external watchdog timer, the watchdog
will emulate a power-on reset and reconfigure the FPGA from page 0 of the Factory EPC. The
watchdog is not enabled until the FPGA is configured. Upon being enabled, the watchdog initialises
itself to the untriggered state and begins counting up to its designed timeout period, within which the
FPGA firmware should start resetting it.

http://www.embedded.com/design_library/OEG20021211S0032
http://www.embedded.com/story/OEG20030115S0042
http://www.embedded.com/design_library/OEG20030220S0037

	Summary
	References
	Introduction
	Clock Card Dual-Configuration Capability
	Using PGM[2..0] Signals to Select Between EPC16s
	Using Dedicated Logic to Switch Between EPC16s (refer to [12
	Circuit Design
	Circuit Operation

