	Physics and Astronomy Dept.
	AK/MA

	UBC
	9/15/2006 1:09 PM

	SCUBA-2 Project
	SC2-ELE-S582-205

	
	Version 2.2

SCUBA-2 Block Specification
fsfb_calc

Revision History

Rev. 1.1 AK, Initial Release

Rev. 2.0 MA, A 2-pole Butterworth low-pass filter is added

Rev. 2.1 MA, updated Lock-mode timing diagram

Rev. 2.2 MA, added document number

February 9, 2006
Table of Contents

41.
Block Overview

41.1
Block Location and Block Interface Within System

41.2
Block Functionality / Features

51.3
Block Dataflow

72.
Block Interfaces

72.1
Interface Signal Description

92.2
Interface Protocol and Timing

92.2.1
Constant Mode Timing

102.2.2
Ramp Mode Timing

122.2.3
Lock Mode Timing

133.
High-Level Description

133.1
RAM Storage Blocks

133.1.1
First Stage Feedback Queue (fsfb_queue) Bank 0 (Even) and 1 (Odd)

143.1.2
Flux Count Queue – Bank 0 and Bank 1

143.1.3
First Stage Feedback Filter Queue

143.1.4
First-Stage Feedback Filter Registers

153.2
First Stage Feedback Processor (fsfb_processor)

173.2.1
Constant Mode

173.2.2
Ramp Mode (fsfb_proc_ramp)

183.2.3
Lock/PIDZ Mode (fsfb_proc_pidz)

193.3
First Stage Feedback Input/Output Controller (fsfb_io_controller)

214.
Files of the Block

214.1
Source Code

214.1.1
Fsfb_calc.vhd

214.1.1.1
Fsfb_processor.vhd

214.1.1.2
Fsfb_io_controller.vhd

224.1.1.3
Fsfb_queue.vhd

224.1.1.4
fsfb_filter_storage

224.1.1.5
fsfb_fltr_regs

224.1.1.6
flux_cnt_queue.vhd

224.2
Header Code

224.2.1
Fsfb_calc_pack.vhd

235.
Naming Conventions Used

Table of Figures

4Figure 1: fsfb_calc block in the system

6Figure 2: First Stage Feedback Calculator (fsfb_calc)

9Figure 3: Interface Timing Diagram 1 (Constant Servo Mode)

10Figure 4: Interface Timing Diagram 2-1 (Ramp Servo Mode)

11Figure 5: Interface Timing Diagram 2-2 (Ramp Servo Mode)

12Figure 6: Interface Timing Diagram 3 (Lock Servo Mode)

13Figure 7: First Stage Feedback Queue Data Word

14Figure 8: First Stage Feedback Queue

14Figure 9: First Stage Feedback Filter Queue

15Figure 10: Filter Registers Storage

16Figure 11: First Stage Feedback Processor

17Figure 12: First Stage Feedback Ramp Processor

19Figure 13: First Stage Feedback Lock/PIDZ Processor

20Figure 14: First Stage Feedback Input/Output Controller

1. Block Overview

1.1 Block Location and Block Interface Within System

The first stage feedback calculator (fsfb_calc) block is instantiated inside each flux loop control block (flux_loop_ctrl) found on the readout card. On each card, there are eight flux_loop_ctrl blocks responsible for the eight different channels. All the eight flux loop control blocks are identical in functionality and features. This common architecture provides convenience on any future code verification, upgrade and support since it makes no difference to test which of the eight channels. However, this architecture is quite resource intensive due to its parallel nature.

[image: image6.jpg]pre_fefo_t_ray_dalays

fofb_calo_sda_sube
i aditer_Suttractor

to_pros_ramp_update_o

result_reg proc
2

ol o

cs0 ED—-

previous_iso_dat 1y i [D—@-

g
amp_mode_an.i =
£ B o procampdat_o
o
4
+-
comparator
g
l—

previous_sto_dat_ i >

ramp_step_size |

amp_amp_i - 1

The first stage feedback calculator (fsfb_calc) stands in the middle of the system datapath. Its upstream input side is interfaced with the adc_sample_coadd block while its downstream output side is interfaced with the flux jumping (fsfb_corr) and wishbone (wbs_fb_data and wbs_fb_frame) blocks.

Figure 1: fsfb_calc block in the system

1.2 Block Functionality / Features

The fsfb_calc block is responsible for calculating the first stage feedback values, storing them in the first stage feedback queues (fsfb_queue), low-pass filtering the feedback values and storing the filtered results, providing feedback wishbone (wbs_frame_data) and correction block (fsfb_corr) access to the queue storage elements. It has the following main features:

· Supports three different servo mode calculations: constant/ramp/lock (also called dynamic).

· Selects the outputs based on the servo mode selection setting with disable feature.

· Filters the feedback data through a 2-pole Butterworth low-pass filter with centre frequency set at 50Hz. Filter coefficients are currently hard coded in fsfb_calc_pack.vhd file.

· Provides following storage RAM:

· 2 64 x 40bit RAM blocks (banks) of first stage feedback queue storage (odd and even, where the MSb is used only in ramp mode to indicate the slope of the ramp) for simultaneous accesses of previous and current frame results without arbitration.

· 2 64 x 8bit RAM blocks (banks) for flux-jump-count storage.

· A 64 x 32bit RAM block for storing filter results.

· A 64 x 29bit RAM block for storing intermediate filter calculation terms or so-called wn terms.

· Generates smooth output transition following the assertion of initialize window input after test parameter settings change.

· Outputs ready signals together with valid data results to all downstream blocks for handshaking ease.

1.3 Block Dataflow

Figure 2 shows the block dataflow for the first stage feedback calculator (fsfb_calc) block. The first stage feedback processor (fsfb_processor) handles the entire data processing task while the first stage feedback input/output controller (fsfb_io_controller) takes care of all the I/O access timings with the queues.

[image: image1.jpg]num_tome_sub1_i

nitialize_window_i
s
fey]

»—

cosdd_done_i
currant_soadd_dsti
curant 451
curent_intsgral_dat |
Cervo._madai
ramp_step_size i
Tamp_amp_i
ConstvalLi

st

aati

a4

fotb_processor

ram_exed
i Flu_ont_queus_bank1

rastart_frame _aligned_i
astar_frame_irom_pos_i
o smitch |
num_ramp_ftame_cycles_ |
ot _add i
to_e_l_acd_i
num_flux_quanta_pres_dy_i
um_ux_quanta_pres_i

fo1b_io_oontraler
1350 io_cortroller

=

ram_exed
1 Hlux_ont_queus_banko

B

ot it regs
35 tie_reas

- .

1510_filtr_storage
135 titar_storage

B

ram a4

T fsf_gueus Bank

15 _processar

B

ram_anea
13516 _queus._banko

-

o quanta_aa s -—-.—- o quanta_o

Figure 2: First Stage Feedback Calculator (fsfb_calc)

2. Block Interfaces

2.1 Interface Signal Description

Table 1: Interface Signals

	Signal
	Description
	Direction

	rst_i
	Global block reset
	in

	clk_50_i
	Global clock (50MHz)
	in

	coadd_done_i
	Done signal issued by upstream adc_sample_coadd block to indicate valid coadd data (one clk period pulse)
	in

	current_coadd_dat_i
	Current coadded value (P)
	in

	current_diff_dat_i
	Current difference (D)
	in

	current_integral_dat_i
	Current integral (I)
	in

	restart_frame_aligned_i
	Indicates next clock cycle is the start of frame (one clk period pulse)
	in

	restart_frame_1row_post_i
	Same as restart_frame_aligned_i, except that it is 1 row behind of actual frame start
	in

	row_switch_i
	Row switch signal to indicate next clock cycle is the beginning of new row (one clk period pulse)
	in

	initialize_window_i
	Frame window at which all values read queues equal to fixed preset parameter, FSFB_QUEUE_INIT_VAL, set to 0
	in

	num_rows_sub1_i
	Number of rows per frame subtract 1 (not used)
	in

	servo_mode_i
	Servo mode selection
	in

	ramp_step_size_i
	Ramp step increment/decrement size
	in

	ramp_amp_i
	Ramp peak amplitude
	in

	const_val_i
	First stage feedback constant value
	in

	num_ramp_frame_cycles_i
	Number of frame cycle ramp result remained level
	in

	p_addr_o
	P coefficient queue address
	out

	p_dat_i
	P coefficient queue data
	in

	i_addr_o
	I coefficient queue address
	out

	i_dat_i
	I coefficient queue data
	in

	d_addr_o
	D coefficient queue address
	out

	d_dat_i
	D coefficient queue data
	in

	flux_quanta_addr_o
	flux quanta queue address
	out

	flux_quanta_dat_i
	flux quanta queue data
	in

	fsfb_ws_fltr_addr_i
	filter-queue read port address for wishbone access
	in

	fsfb_ws_fltr_dat_o
	filter-queue read data address for wishbone access
	out

	fsfb_ws_addr_i
	First stage feedback queue read-port address for wishbone access (previous frame)
	in

	fsfb_ws_dat_o
	First stage feedback queue read-port data for wishbone access (previous frame)
	out

	flux_cnt_ws_dat_o
	wishbone access to read flux count data

(Note that fsfb_ws_addr_i is used as address for reading flux_cnt, because the only data mode that captures flux_cnt is the one that reads 8bit flux count + 24bit fsfb data)
	out

	fsfb_fltr_dat_rdy_o
	First stage feedback queue filter data ready (current frame)
	out

	fsfb_fltr_dat_o
	First stage feedback queue filter data (current frame)
	out

	fsfb_ctrl_dat_rdy_o
	First stage feedback queue control data ready (previous frame)
	out

	fsfb_ctrl_dat_o
	First stage feedback queue control data (previous frame)
	out

	fsfb_ctrl_lock_en_o
	First stage feedback queue control lock data mode enable
	out

	num_flux_quanta_pres_rdy_i
	flux quanta present count ready
	in

	num_flux_quanta_pres_i
	flux quanta present count ready
	in

	num_flux_quanta_prev_o
	flux quanta previous count
	out

	flux_quanta_o
	flux quanta value (formerly know as Z coefficient)
	out

2.2 Interface Protocol and Timing

2.2.1 [image: image7.png]ons 200ns 400ns s0ons s0ons 1us 1208
RN RN R N R RN AN RN RN AN AR AN AN
k50 sz |
sevomode i 110 IR
constvali na.0 1 Y Tew
restart_frame_aligned_i !
restart frame_trow_post i |
P—p{20ns}
initialize_window_i 1 L, T R
inialze_windaw et 10 L
P—p{20ns}
R[1] ODD - FLTR| WR[0] EVEN - FLTF R[1] EVEN - FLTF R[0] ODD - FLTR| WWR[1] ODD - FLTR| WR[0] EVEN - FLTR
R[0] ODD - CTRL| RR[1] ODD - CTRL| RRI0] EVEN - CTRL_RR[1] EVEN - CTRI_RRI[0] ODD - CTRL| RR[1] ODD - CTRL
row_switch i
b%znns) ><r(znns)
EETET]

b dato 1.0 oqmn
{100ns}

fefo_fir_dat_rdy_o o

{on

Iy

[e

ERE

fh et et [31.0] oqmn
{80ns}

fefo_ctr_at_rdy_o o

Constant Mode Timing

Figure 3: Interface Timing Diagram 1 (Constant Servo Mode)

2.2.2 [image: image8.png]ons 200ns 400ns s0ons s0ons 1us 1208

e e been b becee b beeecbeeee beccbecen beeen e b
k50 sz |
servo_made_i no Iz
ramp_step_size_i a0 1 Ten
rarmp_amp_i a0 1 Tens
num_ramp_frame_cycles_i (3101 | (3T
restart frame_aligned i '
restart frame_trow_pasti '

Pp{20ns}
intialze windaw_i ' L
intialze windaw_ext 00 L
»p{20ns}
R[1] ODD - FLTR| WWRI0] EVEN - FLTF R[1] EVEN - FLTF R[0] ODD - FLTR| WRI[1] ODD - FLTR| WR[0] EVEN - FLTF

- RRI[0] ODD - CTRL| RR[1] ODD - CTRL| RR[0] EVEN - CTRL RR[1] EVEN - CTRL RR[0] ODD - CTRL| RR[1] ODD - CTRL

Mpiaons)

sl

S2he

t160ms1—
E

fef_fitr_dat_o 1.0 oq
ft160ms)1—»|

fefo_fir_dat_rdy_o o

{onspy

¥ one)

S2he

fo_ctr_dat_o @ o q EET)
(80ns)

fefo_ctr_at_rdy_o o

Ramp Mode Timing

Figure 4: Interface Timing Diagram 2-1 (Ramp Servo Mode)

[image: image9.png]us 12us Laus 16us 18us 2us 22us
Pecnfee Lo b beeefpecnbvven bpenebeeeebpcec bbb
clk_50_1 SOMHz |
servo_mode_i o 1
ramp_step_size_i 3.0 1
ramp_amp_i 3.0 1
num_ramp_frame_cycles_i (3101 |
restart_frame_aligned_i !
restart_frame_1row_post_i | i\
initialize_window_i |
Initialize_window_ext o
DD- FLTR WR(0] EVEN - FLTR {VR[1] EVEN - FLTR |WR[0] ODD - FLTR |WR[1]0DD - FLTR ¥R(0] EVEN - FLTR |WRI1] EVEN - FLTH
DD - CTRY, RR(110DD - CTRL_RR(0] EVEN - CTRL RRI1] EVEN - TR RRI0) 0DD - CTRL_RR[1]0DD - CTRL{, RRI(0] 0DD - CTRI
row_switch_i | i\
*HBDHS)‘"
fafh_fitr_dat_o [B1.0] 0 E EED 52/h|
mennshh‘
fafh_fitr_dat_rdy_o o
ans}
fafh_ctrl_dat o [B1.0] 0 3203 EEY 52h0
fa_ctrl_dat_rdy_o o

Figure 5: Interface Timing Diagram 2-2 (Ramp Servo Mode)

2.2.3 Lock Mode Timing

Figure 6: Interface Timing Diagram 3 (Lock Servo Mode)

3. High-Level Description

The first stage feedback calculator is architected based on its sub-block functionality. It consists of two main sub-blocks and 6 RAM storage blocks; the first stage feedback input/output controller (fsfb_io_controller), processor (fsfb_processor) and the RAM blocks are:

· fsfb_queue_bank0 and fsfb_queue_bank1

· flux_cnt_queue_bank0 and flux_cnt_queue_bank1

· fsfb_fltr_storage

· fsfb_fltr_regs

3.1 RAM Storage Blocks

3.1.1 First Stage Feedback Queue (fsfb_queue) Bank 0 (Even) and 1 (Odd)

The first stage feedback queues (fsfb_queue) store the calculated results from the first stage feedback processor (fsfb_processor), so that they can be later read by the wishbone slave frame data (wbs_frame_data) or transferred to the downstream first stage feedback correction (fsfb_corr) block. Two queues (identified as odd and even banks) are required, with one storing the previous-frame data and the other storing the current-frame data. It is important to realize that the wbs_frame_data and fsfb_corr are always accessing the previous frame data, and not the current one. Therefore, when a wishbone read request comes in, the previous frame data is read back right away and the read process is not aligned with the frame boundaries. The first stage feedback input/output controller (fsfb_io_controller) block directs all inputs and outputs to/from the queues.

The first stage feedback queue is created from Altera 3-port RAM Megafunction (shown in Figure 8), with write port dedicated to internal system write (calculation results), one read port dedicated to internal system read (by fsfb_corr), and the other read port dedicated to wishbone read accesses. Note that what Altera calls 3-port is basically a dual-port RAM as commonly referred to in industry.

The RAM block is 64 x 40bit which translates to 6bit address line. The current MCE is configured to use 41 elements, but the RAM block supports extension to 64 elements. Figure 7 provides the bit definition of the 40-bit queue data word. As shown, bit 39 stores the next ramp operation (add = '0', sub = '1') and bits 38 down to 0 store the result. Therefore bit 39 should be ignored in all modes except ramp.

	Servo Mode
	Bit 39
	Bit 38: 0

	01 - Constant
	X – don’t care (ignored)
	Constant result

	10 - Ramp
	0 – add, 1 - subtract
	Ramp result

	11 - Lock
	X – don’t care (ignored)
	Lock result

Figure 7: First Stage Feedback Queue Data Word

Figure 8: First Stage Feedback Queue

3.1.2 Flux Count Queue – Bank 0 and Bank 1

These two RAM blocks, 64 x 8b each, are very similar to the fsfb queue RAM blocks. Flux count values are only read in one of the data modes that reads 8b flux count values combined with partial (24b) fsfb data.

3.1.3 First Stage Feedback Filter Queue

This 64 x 32b RAM block stores the filtered output calculation results. The width of this queue is the same as the wishbone data. It is important to note that the filter results are not double buffered, since delay is acceptable in reading filter results. When a wishbone read request comes in, the read starts at the beginning of the next frame, in order to be aligned with the frame boundaries.

Figure 9: First Stage Feedback Filter Queue

3.1.4 First-Stage Feedback Filter Registers

The fsfb_filter_regs block instantiates 2 RAM blocks to store the previous 2 samples of wn, where wn is the interim filter calculation results. For details of the filter calculations, refer to the fsfb_calculations.doc where the implementation of the second-order Butterworth low-pass filter that is implemented.

The calculations are:

wtemp = b1* wn-1 + b2* wn-2

wn = xn – wtemp/2m

yn = wn + 2 * wn-1 + wn-2

where x is the input to the filter and y is the output of the filter, b1 and b2 are the filter coefficients, m is the number of bits for the filter coefficients.

Note that the filter is reset through initialize_window_i signal. Each RAM block has 64 words and the word length is determined in the pack file by FLTR_DLY_WIDTH.

[image: image2.wmf]wren

RAM (single-port)

addr

data

q

wren

RAM (single-port)

addr

data

q

Initialize_window_i

wn_i

addr_i

wren_i

wn1

wn2

Figure 10: Filter Registers Storage

3.2 First Stage Feedback Processor (fsfb_processor)

The first stage feedback processor (fsfb_processor) shown in Figure 11 contains the arithmetic/comparison circuitry that calculates the results of the first stage feedback to be written to the first stage feedback queues (fsfb_queue), along with the arithmetic for a 2-pole Butterworth low-pass filter with a cut-off frequency of 50Hz. It supports three servo processing modes: constant, ramp, and lock corresponding to servo mode selection = "01", "10", and "11". "00" selection is invalid. Under this invalid setting, the update pulse (essentially the queue write enable) would not be generated, and hence there would be no update whatsoever. In addition, only the selected result will be output from this block. In other words, there is only a single output to be used by another block and it is the result for the selected servo mode. Meanwhile, when operated in the ramp mode, the new ramp value from the processor block is only written to the queue when the "ramp update new" input from fsfb_io_controller is active.

In all three modes of operation, the timing relationships for the downstream fsfb_ctrl_dat_o and its rdy_o pulse are identical. In other words, the data result for the downstream first stage feedback correction (fsfb_corr) block is always ready 4 system clock cycles (80 ns) after the rising edge of the row_switch. For the first stage feedback filter (fsfb_fltr) block, however, the data result ready timing varies from one mode to another. It depends directly on the number of system clock cycles required for processing data in each mode.

[image: image3.png]fo_proc,_dat_o

o P i proc o dat_o

semo_moda_i I

cosdd_done_i
currant_soadd_dsti
urant 451
curent_intsgral_dat |
plast

aati

a4

w2zt

it st

wn_tat o

previous_sto_dat_i
to_proo_update_o ramp_step size i
o yrvoepiate] | updste_neni ED—H]
o froo_todk an_o

p— <
3

e tet] proc constval i

z

plit o] proc

»

fotb_proo,pice

151b_proo_ramp
11t preo oz i 1sib_proc_rame.

previous_fe_at_rty_i
initatize_windon_od_i B -
s

s + - - -

Figure 11: First Stage Feedback Processor

3.2.1 Constant Mode

Constant mode is handled directly by the top-level fsfb_processor block. The constant and servo mode selection values are made available by the wishbone slave feedback data block. These values should be stable before the frame timing block outputs the "initialize window" pulse. The constant value is provided to the downstream first stage feedback filter (fsfb_fltr) and control (fsfb_ctrl) blocks in the second and third frame time window respectively. Figure 3 shows the timing diagram for this mode.

3.2.2 Ramp Mode (fsfb_proc_ramp)

The ramp processor (fsfb_proc_ramp) block shown in Figure 12 handles the ramp mode processing. The ramp step size, amplitude, and servo mode selection are made available by the wishbone slave feedback data block. The values should be stable before the "initialize window" pulse is output by the frame timing block. The generated ramp output always initializes at zero level and gradually increases in step size increments until reaching the maximum level set by the ramp amplitude input. Once it reaches the maximum amplitude, the output ramp is then decremented in the same step size until the zeroed level. The pattern will be repeated continuously. The pace of increment/decrement is dictated by the "ramp_update_new" input derived from the "num_ramp_frame_cycles" wishbone input.

In summary, the first ramp increment value is present on the datapath to the downstream first stage feedback filter (fsfb_fltr) and control (fsfb_ctrl) blocks in the num_ramp_frame_cycles + 1 and +2 frame time window respectively. Figure 4 and Figure 5 show the timing diagram when the num_ramp_frame_cycles is 1. Note that the instantiated 16-bit adder/subtractor is generated through Altera megafunction. The 16-bit add/sub result is zero-padded to 32 bits. Bit 32 is written with '1' when the next ramp operation is subtraction or '0' when addition. This toggling of next operation bit normally occurs when the maximum or zero is reached after a series of ramp addition or subtraction.

Figure 12: First Stage Feedback Ramp Processor

3.2.3 Lock/PIDZ Mode (fsfb_proc_pidz)

The lock/pidz mode processor (fsfb_proc_pidz) block shown in Figure 13 handles the lock mode calculations which includes PID-loop calculation and low-pass filtering. The results will then be passed to the downstream blocks. Here is a summary of the calculations:

pidz_sum = (P*current_coadd_value) + (I*current integral) + (D*current difference) + Z

fltr_sum (n) = pidz_sum(n) + 2*pidz_sum(n-1) + pidz_sum(n-2) – b1*fltr_sum(n-1) – b2*fltr_sum(n-2)

where n is the sample number.

In order to save the DSP resources, a 32x32b multiplier is shared at different stages of calculation. However, there are separate adders for each addition/subtraction operation. If resource becomes scarce, a shared adder scheme can be adopted. Note that in the current implementation, each of the 8 channels have their dedicated multiplier, therefore, the multiplier in each channel has to be pipelined for different operations. (This was an architectural decision over the model that would have shared one calculation block between all channels and therefore, could afford having dedicated multipliers for each stage of operation.)

A scheduling register, calc_shift_state, is used to schedule the calculations and when to register the results at each stage.

The P, I, D, and Z coefficients are provided by the wb_fb_data (wishbone slave feedback data) block. The filter coefficients are hard-coded in the pack file. There are 41 different sets of coefficient values stored in the pidz_coeff_queue and they should be stable before the frame timing block asserts initialize_window.

The fltr_sum calculations are broken down as follows:

wtemp = b1* wn-1 + b2* wn-2
 (eq. 1)

wn = pidz_sumn – wtemp/2m (eq. 2)

fltr_sumn = wn + 2 * wn-1 + wn-2 (eq. 3)

To implement the calculation of pidz_sum, one 32-bit multiplier, two 64-bit first-stage adders, and one 65-bit second-stage adder are instantiated. All inputs from the upstream adc_sample_coadd block including current coadd value, integral and difference are valid when the coadd_done pulse is active. After coadd_done is asserted, it takes a total of 5 clock cycles to complete the PID calculation. The multiplier results are valid at the end of the third clock cycle, the first stage adder results (pi_sum and dz_sum) are valid at the fourth and finally the second-stage adder result (pidz_sum) is valid at the fifth clock cycle. This relationship is shown in Figure 6 where the fsfb_proc_pidz_sum_update signal is asserted 5 clock cycles after the incoming coadd_done is asserted.

To implement the fltr_sum calculations, 2 multiply operations have to be performed in eq. 1 above. Note that eq. 2 has to wait for pidz_sum results to be ready, therefore, fltr_sum is only available 8 clock cycles after coadd_done is asserted.

The operations are scheduled as follows:

calc_shift_state (0) P*current_coadd_value = p_product

calc_shift_state (1) I*integral_coadd_value = I_product

calc_shift_state (2) D*difference_coadd_value = D_product

 store fltr_tmp = 2 * wn-1 + wn-2
calc_shift_state (3) b1*wn-1 = b1_product

 store pi_sum = p_product + I_product

 store dz_sum = d_product + z

calc_shift_state (4) b2*wn-2 = b2_product

 store pidz_sum = pi_sum + dz_sum

calc_shift_state (5) assert proc_pidz_update

 store wtemp = b1_product + b2_product

calc_shift_state (6) store wn = pidz_sum – wtemp/2m
calc_shift_state (7) store fltr_sum = wn + fltr_tmp

calc_shift_state (8) assert proc_fltr_update
It should be noted that although the resultant PIDZ sum is 66-bit wide, the signed result that can be stored is only 40-bit. Because of this, only bits 38 down to 0 represent the magnitude and bit 39 is reserved for sign. This is strictly a limitation of the implemented width size of the first stage feedback queue.

[image: image4.png]oslo_shif_state_prac
i

)

2 dati

a2

pdst
aati

a4

fefb_calo_sddersz

current_coadd_dat i ; iftr_add
it A oat
curant ntiora_oat s Grencm T A
2 tsfb_cale_multiplier |
o ™ efo_oalo_suoas
i vienp i
eio_oale_sdderte
e
eio_oale_addertt
wn_dat_i i_pi_sdd
iz aati
o] +
olk_50_i *- *
contiGane
>
3
>
3
»
)
—
—
3
3
efo_oale_sdderd1
s ™
¥

feto_calo_sut2s
v

lodk_moda_sn_i

> wn_dsto

r<to_cato_saserss

i
fefb_calo_sdderzs
i wh. correction

e

WD 5t pros_pidz_update_o
b proc_pidz_sum_o
et proo_i_updata. o
o proc_i_sum_o

Figure 13: First Stage Feedback Lock/PIDZ Processor

3.3 First Stage Feedback Input/Output Controller (fsfb_io_controller)

The first stage feedback input/output controller (fsfb_io_controller) block shown in Figure 14 maintains control over all the input/output traffic to/from the first stage feedback queues. Using signals like "row switch, restart frame aligned and restart frame 1row post" generated by the frame timing block, the controller block ensures the queue read/write address inputs and even/odd bank switching are updated correctly at the right times. By doing this, correct frame data results would then be read/written from/to the queues.

Three different kinds of operation are performed on the queues. They are 1) wishbone read, 2) system read, and 3) system write. The word "system" always refers to the fsfb_calc block.

[image: image5.png]-
abrto s vt sst0
+ Herss pranin =)
Sl oo vedato
e oo
a1 i it
ok N s _aueue_id_opab_bifio s o _aueue_id_ssdt_o
et o saars ety ey =
i e s [ttty ! i<
oo_auele i o TN :
it g pien v st
Pl 1 oS e
o 2 pY SR
et
Jien S
S — g s srwtmior
P i e
s st s -
T fravepe] :.—- intiaze_nidon_ox_o
initialize_window_i - - -
row_switch_i - -
restart_frame_1row_post_i [49
ok 50 i - + 49 2 d
i - 9 4 2 4
-
M rier +
.

estar_frame _aligned_i M-

to_c_dat_rty_o
to_cti_dat_o
nur_flux_quanta_prev_
p_addi_o

e

addi o

wn_sdir.o
flu_quanta_addr_o
previous_ifo_dat o
previous_tfb_dat_rdy_o

Figure 14: First Stage Feedback Input/Output Controller

As mentioned in the FSFB_QUEUE section, a separate read port is allocated for the wishbone slave. Ideally, the wishbone slave can request for unfiltered data at anytime. However, to get a complete frame worth of data, the wishbone slave must not perform any read close to the boundary between row 0 and 1 of each frame time. The data read is selected from either bank 0 or 1, dependent on the bank selection control.

For every row switch, the fsfb_io_controller block will perform two sequential reads and the reads are performed regardless of the selected servo mode. From the first read, the first stage feedback queue result data is obtained for the downstream first stage feedback control block. This row result has already been calculated in the previous frame time. From the second read, the first stage feedback queue result data in the previous frame time is fetched to update the current ramp value for use in the next frame time. Similar to the wishbone slave, a separate read port is allocated for the system so that no arbitration is required between them.

The well-defined sequence of read operations described above leads to the shift-register based state machine of the controller.

Shift Cycle 0: Write fsfb_ctrl address to RAM read address inputs

 Shift Cycle 1: Internal RAM processing; Write system address to RAM read address inputs

 Shift Cycle 2: RAM data is valid for fsfb_ctrl

 Shift Cycle 3: RAM data is valid for system

 Note that each READ from RAM takes 3 cycles to complete.

The system write operation is also straightforward. The write data and write enable are always sourced from the fsfb_processor block outputs. The fsfb_io_controller only updates the write address and demultiplexes the write enable to the right bank. It is important to realize that the two-bank queue structure details are not visible to any block except the fsfb_io_controller.

4. Files of the Block

4.1 Source Code

4.1.1 Fsfb_calc.vhd

This is the top-level component for the first stage feedback calculator.

4.1.1.1 Fsfb_processor.vhd

This is the top-level component for the first stage feedback processor and is part of fsfb_calc.

4.1.1.1.1 Fsfb_proc_ramp.vhd

This is the top-level component for the first stage feedback ramp processor and is part of fsfb_processor.

4.1.1.1.1.1 Fsfb_calc_add_sub16.vhd

This is the top-level component for the 16-bit adder/subtractor and is part of fsfb_proc_ramp.

4.1.1.1.2 Fsfb_proc_pidz.vhd

This is the top-level component for the first stage feedback lock/pidz processor and is part of fsfb_processor.

4.1.1.1.2.1 Fsfb_calc_adder65.vhd

This is the top-level component for the 65-bit adder and is part of fsfb_proc_pidz.

4.1.1.1.2.2 Fsfb_calc_adder66.vhd

This is the top-level component for the 66-bit adder and is part of fsfb_proc_pidz.

4.1.1.1.2.3 Fsfb_calc_multiplier.vhd

This is the top-level component for the 32-bit multiplier and is part of fsfb_proc_pidz.

4.1.1.1.2.4 Fsfb_calc_sub45.vhd

This is the top-level component for the 45-bit adder to calculate wtemp and is part of fsfb_proc_pidz.

4.1.1.1.2.5 Fsfb_calc_adder29.vhd

This is the top-level component for the 29-bit adder and is part of fsfb_proc_pidz.

4.1.1.1.2.6 Fsfb_calc_adder31.vhd

This is the top-level component for the 31-bit adder to calculate fltr_tmp and is part of fsfb_proc_pidz.

4.1.1.1.2.7 Fsfb_calc_adder32.vhd

This is the top-level component for the 32-bit adder to calculate fltr_sum and is part of fsfb_proc_pidz.

4.1.1.2 Fsfb_io_controller.vhd

This is the top-level component for the first stage feedback input-output controller and is part of fsfb_calc.

4.1.1.3 Fsfb_queue.vhd

This is the top-level component for the first stage feedback queue and is part of fsfb_calc.

4.1.1.4 fsfb_filter_storage

This is the top-level RAM component for storing filter results and is instantiated in fsfb_calc.

4.1.1.5 fsfb_fltr_regs

This is the top-level component for storing filter intermediate results and is instantiated in fsfb_calc.

4.1.1.6 flux_cnt_queue.vhd

This is the top-level RAM component for storing flux count and is instantiated in fsfb_calc.

4.2 Header Code

4.2.1 Fsfb_calc_pack.vhd

This is the package file for the first stage feedback calculator. It contains all the constant and component declarations used.

5. Naming Conventions Used

data

qa

wishbone

(wbs_frame_data)

calculating DAC value

(fsfb_corr)

system

(fsfb_io_controller)

wishbone

(wbs_frame_data)

FSFB

QUEUE

64 x 40b

rdaddress_b

wraddress

rdaddress_a

wren

data

qb

qa

fsfb_corr

wbs_frame_data

wren

DAC

adc_sample_coadd

fsfb_proc_dat_o

fsfb_calc

116

p/i/d_dat_i

p/i/d_addr_o

40

wishbone

(wbs_frame_data)

coadd_done_i

row_switch_i

 wishbone

(wbs_frame_data)

fsfb_ctrl

flux_loop_ctrl

wbs_fb_data

wraddress

rdaddress_a

fsfb_ctrl_dat_rdy_o

fsfb_fltr_dat_o

Filter

QUEUE

64 x 32b

of sequence Y

Row1 of Frame 1

restart_frame_aligned_i

Clk_50_i

of sequence Y

Row0 of Frame 1

Sequence X

Row40 of Frame N of

Block Specification

Page 1 of 24
5
Block Specification

6 of 24

_1199261587.vsd
addr�

data�

q�

wren�

RAM (single-port)�

�

�

�

�

RAM (single-port)�

�

�

RAM (single-port)�

�

Initialize_window_i�

wn_i�

addr_i�

wren_i�

wn1�

wn2�

