	Physics and Astronomy Dept.
	bnb

	UBC
	9/15/2006 1:07 PM

	SCUBA-2 Project
	SC2-ELE-S582-202

	
	Version 0

SCUBA-2 Block Specification
flux_loop

September 15, 2004
Table of Contents

31.
Block Overview

31.1
Block Location and Block Interface Within System

31.2
Block Functionality / Features

51.3
Read/Write ports to RAM blocks

51.4
Block Dataflow

72.
Block Interfaces

72.1
Interface Signal Description

72.2
Interface Protocol and Timing

83.
High-Level Description

83.1
State Machine Description

83.2
Special Optimizations

94.
Files of the Block

94.1
Source Code

94.1.1
Source1.vhd

94.2
Header Code

94.2.1
Header1.vhd

105.
Naming Conventions Used

1. Block Overview

1.1 Block Location and Block Interface Within System

The flux_loop block is replicated 8 times on the Readout Cards – each minding a single feedback path between a readout ADC and a Feedback DAC of the same channel. Nominally, each flux_loop block will lock First-Stage SQUIDs at their operating point, and record data from the SQUIDs for reporting to the outside world.

The flux_loop blocks are Wishbone Interface slaves. All digital communication between the Realtime Linux PCs and the flux_loop block take place through the Wishbone Interface.

1.2 Block Functionality / Features

The following finite state machines (FSM) exist in the flux_loop block:

· adc_sample: the adc_sample block will sample the 14-bit parallel ADC (AD6644), insert the raw data in raw_data_queue, co-add approximately 40 samples from each row to determine the next set of dynamic values to write to coadded_data_queue_0 or _1 (depending on whether it’s reading from _1 or _0 to retrieve the current set of values that it needs to determine the next difference and integral. Remember that one cannot concurrently read from the same memory location that one is writing to. Thus, two queues are needed.) for the next frame’s feedback calculation.

· first_stage_fb_calc: the first_stage_fb_calc block will determine what the next 1st stage feedback value is for the previous row, and will write that value to first_stage_fb_queue_0 or _1. The next 1st stage feedback value will be determined based on what value the enable_servo register indicates. The enable_servo register can take one of four different logical values: disable, constant, ramp or dynamic.

When the enable_servo register is set to ‘disable’, flux feedback values will be set to zero. When the enable_servo register is set to ‘constant’, the 1st stage feedback values for all rows will be set to the constant value stored in the fsfb_const_val register. When the enable_servo register is set to ‘ramp’, the 1st stage feedback values for each row will be monotonically ramped up and down according to the values stored in the ramp_amplitude and ramp_step_length registers. When the enable_servo register is set to ‘dynamic’, flux-feedback calculations will determine the next 1st stage feedback value for each row.

The first_stage_fb_calc block will calculate next 1st stage feedback values on a metric one row behind what the current row is. This is because it will take one whole line period to accumulate a co-added value that is to be used to calculate values stored in the coadded_data_queue’s. By the time that the co-added value is ready to be used for calculations, the adc_sample block is ready to read the feedback from the next row.

· first_stage_fb_ctrl: the first_stage_fb_ctrl block will output the appropriate 1st stage feedback value on the 14-bit parallel DAC (AD9744), in accordance with the row enabled by the Address Card multiplexer.

The following RAM blocks exist in the flux_loop block:

· raw_data_queue: The raw_data_queue stores raw data values for reporting out. The requirements for raw data are a little terse at the moment, so not much though has gone into the organization of data within the queue. As it stands, the queue will be 16 bits wide, and have enough storage for several frames of data.

· coadded_data_queue_0/1: The coadded_data_queue’s store dynamic data for each row. The dynamic data are: previous/current value, previous/current difference and previous/current integral. The data are used in conjunction with the parameters stored in the pidz_coeff_queue to calculate new 1st stage feedback values.

The values in the coadded_data_queue are updated as follows: (a) when a current co-added value is available for row ‘x’, the adc_sample FSM reads the previous value and previous integral from coadded_data_queue_x; (b) the adc_sample FSM uses the current value, the previous value and the previous integral to calculate current data, and stores these in coadded_data_queue_y. The next time around, the queues are flip-flopped – coadded_data_queue_y becomes the queue which is storing the previous data, and coadded_data_queue_x becomes the queue that the new calculated data are written to.

By retaining the previous set of old data in one queue while writing new parameters to the other, we will be able to implement some filtration (if necessary) to cut down on noise in the data from the pre-amp chain. In addition, maintaining two identical queues allows the adc_sample block to read from an index in one while writing to the same index in the other simultaneously. To know which queue the most recent data are in for the first_stage_fb_calc block, a register call even_odd will indicate which of the two identical coadded_data_queue’s has the most recent data.

· pidz_coeff_queue: The pidz_coeff_queue holds the set of P, I, D and Z coefficients that are used to calculate the next 1st stage feedback value for each row. P: proportional; I: integral; D: differential; Z: ???.

· first_stage_fb_queue_0/1: The first_stage_feedback_queue’s hold two sets of values: one holds the 1st stage feedback values that are currently valid. The first_stage_fb_ctrl block steps through it and applies the feedbacks at the appropriate moment in a frame. The other holds new feedback values that are being written sequentially as the first_stage_fb_calc block does the calculations for new 1st stage feedback values based on data in the coadded_data_queue, and coefficients in the pidz_coeff_queue.

Again, there are two duplicate queues, one for the Wishbone interface to read from while the other is being written to by the first_stage_fb_calc block.

· row_order_queue: The row_order_queue indicates the proper row addressing order of the Address Card multiplexer. The first_stage_fb_calc and first_stage_fb_ctrl blocks need this information to determine what queue-index to access for the next valid 1st stage feedback value to apply, for example.

· clk_action_queue: The clk_action_queue is a list of all the significant 50 MHz clock cycles in a frame of data. Significant clock cycles include: when the address card multiplexer changes rows, etc.

The following registers exist in the flux_loop block:

· fsfb_const_val: Specifies the constant value (0 to 214-1) that is output by the 1st stage feedback when the enable_servo parameter is set to ‘constant’.

· ramp_amplitude: Specifies the ramp amplitude (0 to 214-1) output by the 1st stage feedback when the enable_servo parameter is set to ‘ramp’.

· ramp_step_length: Specifies the number of frame cycles that each ramp step takes. This, in turn, determines the period of the ramp, i.e.

ramp_frequency <= (800 kHz frame period)/(ramp_step_length * 214)

Thus, when ramp_step_length = 5, ramp_frequency = 9.8 Hz; when ramp_step_length = 1, ramp_frequency = 48.8 Hz. In this manner, any ramp frequency between 0 and 48.8 Hz can be achieved.

· data_mode: Specifies what form of data the wishbone interface should report out. The wishbone interface that has access to all significant data queues can report out raw data (maybe), or split 16-bit/16-bit feedback/error data, or pure 32-bit feedback data.

· col_enable: Specifies whether this feedback loop should report data.

· num_co_added_samples: Specifies the number of 50 MHz samples that make up one co-added value

· enable_servo: Specifies what type of servo loop will run. This parameter has four known values: disable, constant, ramp and dynamic.

· sample_delay: Specifies the number of 50 MHz samples that the co-adding circuitry should discard before beginning to accumulate the raw-data samples for a new row.

· dac_output_delay: Specifies the number of 50 MHz that the first_stage_fb_ctrl block should delay clocking out the new 1st stage feedback value after the Address Card multiplexer has switched to a new row. This value will be the same for all rows. It will be used if it is discovered that switching off one row, switching on the next, and applying a new 1st stage feedback all in short order inject too much noise into the system.

· even_odd: (internal) Indicates which of the twined queues holds current data which are not being written to.

1.3 Read/Write ports to RAM blocks

The interfaces to RAM blocks in the flux_loop block each nominally have 1 ‘write’ port and up to up to 3 ‘read’ port. The truth is that the Altera Megafunction Wizard does not implement RAMs with any more than one ‘write’ interface and two ‘read’ interfaces (for a maximum of three interfaces). Thus, it will take a little ingenuity to implement the flux_loop with the ability to read out the data.

One approach to this problem is to use time-division multiplexing to read out data for different blocks. This approach is feasible, since we plan to clock the RAMs at a higher rate than 50 MHz to read/write data. However, this solution would require clocking some state machines at higher than 50 MHz – which is not in the plans at this point.

Another approach is to double the amount of storage for data that needs to be read out by more then two state machines. By replicating the data that are written with a second RAM, one effectively doubles the number of FSMs that can have access to the data from 2 to 4. RAM resources on the Readout Card are not scarce: ~360 Kbytes are available. In addition, the RAMs that would be duplicated are not prohibitively large. This second solution seems to be a reasonable approach.

1.4 Block Dataflow

The data flow for flux-locking goes like this:

(a) When the Address Card multiplexer switches on row ‘n’, the first_stage_fb_ctrl block applies a new 1st stage feedback for row ‘n’ through the AD9744 DAC after a delay of dac_output_delay 50 MHz cycles.

(b) After waiting for a certain sample_delay, the adc_sample block begins to co-add data from the AD6644 ADC for row ‘n’, and continues to do so until num_co_added_samples have been accumulated.

(c) When a current co-added value for row ‘n’ is ready, the adc_sample block accesses coadded_data_queue_x to recall what the ‘previous_value’, and ‘previous_integral’ were for row ‘n’ during the previous frame. The adc_sample block uses these two values to calculate the following:

current_value <= current_co_added_value

current_difference <= current_co_added_value – previous_value

current_integral <= previous_integral + current_co_added_value

These current dynamic operating parameters are stored in coadded_data_queue_y (the twin of _x).

(d) Now that a current set of dynamic operating parameters have been calculated and stored in coadded_data_queue_y, the first_stage_fb_calc retrieves them and uses them to calculate a current 1st stage feedback value for row ‘n’ during the next frame period. The algorithm for calculating the current feedback value is known, and can be implemented within the timing constraints of the system. The current feedback value is then inserted in first_stage_fb_queue_y for use during the next frame of data. Meanwhile, the first_stage_fb_ctrl block has applied the 1st stage feedback for row ‘n+1’.

2. Block Interfaces

2.1 Interface Signal Description

Table 1: Interface Signals

	Signal
	Description
	Direction

	
	
	

	
	
	

· extra register to indicate the number of rows that are in the detecter

· during the first frame of data taking, the D coefficient should be zero

· during the switchover from ram0 to ram1, there could potentially be three read-requests from the ram holding the previous values.

· we need two queues, one holding a complete set of parameters and another holding the set of data being modified. The readout of one of the rams by the wishbone interface happens at a different rate

2.2 Interface Protocol and Timing

3. High-Level Description

3.1 State Machine Description

3.2 Special Optimizations

4. Files of the Block

4.1 Source Code

4.1.1 Source1.vhd

4.2 Header Code

4.2.1 Header1.vhd

5. Naming Conventions Used

Block Specification

Page 1 of 9
5
Block Specification

9 of 9

