
Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

Power-Supply Controller Firmware Description

Revision History:
Rev. 1.1 SH Dec. 22, 2006 Initial realease

Rev. 1.2 BB Feb. 14, 2007 formatting

Rev. 1.3 MA Mar. 8, 2007 added headers and rev. history

Created on: 22 Dec. 2006

Last saved on: 09 March 2007

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

0. Important Points
- Software version variable at beginning of scuba2ps.c file (2 consecutive places)
- Key parameters to change for different settings located in IO.h
- **Any changes to firmware MUST be followed by recalculation of soft reset address.
See soft_reset.* section below.

I. Building Hex File

Open Keil uVision project file. Should see SCUBA2PS.c as target file. Make
necessary changes. Select ‘project -> rebuild target files’. Building should
complete with 0 errors. Hex file can be found in target directory. Refer to Kiel
manual.

II. Programming the PSUC:
 See document “Programming the PSUC”
III. Version Summary
 TBD

1. Introduction
This document provides a (brief) overview of the SCUBA2 PSUC card firmware design.
The intended audience is already familiar with general SCUBA2 MCE Subrack design,
and PSU/PSUC hardware design.

For a general introduction to the PSUC firmware and hardware, see document “061024 -
Development of PSUC Firmware.pdf”. Contains a more detailed description of basic
PSU/PSUC operation. Note that this document is based on an earlier version of
firmware.

The CC-PSUC SPI communication protocol is specified in document “SPI
Communications Interface between CC and PS.“

Furthermore, consult PSU and PSUC circuit schematics for more detail.

PSUC firmware code (as of Dec. 2006) is included as an appendix. This code is heavily
commented and should be viewed in conjunction with its description.

2. General Overview of Firmware
Connectivity between PSU, PSUC, and subrack backplane is summarized in Figure 1
below.

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

Figure 1: Power Supply Assembly Connectivity Diagram

The PSUC is essentially an AT89 microcontroller with a bunch of interface circuitry such
that PSU can be controlled and voltages/temperatures/currents can be read. The
microcontroller can directly communicate with the Clock Card over the backplane via the
SPI interface. Refer to “SPI Comm…”.

Power Supply Data Block

Byte
#s

Item Bytes Description

0 Silicon ID 4 32 least sig bits of 48 bit ID

4 Software Version 1 Encoded as hex byte. 0xYZ = version Y.Z

5 Fan1 Tachometer 1 Currently not used

6 Fan2 Tachometer 1 Currently not used

7 PSU Temperature 1 1 8 bit two’s compliment (1 deg. increments)

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

8 PSU Temperature 2 1 8 bit two’s compliment (1 deg. increments)

9 PSU Box Temperature 3 1 8 bit two’s compliment (1 deg. increments)

10 ADC Offset 2 Digitized Ground (bipolar, 2 bits/deg C)

12 Supply Voltage 1 2 +Vcore Supply – unipolar scaled to 73.2%

14 Supply Voltage 2 2 +Vlvd Supply – unipolar scaled to 73.2%

16 Supply Voltage 3 2 +Vah Supply – unipolar scaled to 73.2%

18 Supply Voltage 4 2 +Va Supply – unipolar scaled to 73.2%

20 Supply Voltage 5 2 -Va Supply – unipolar scaled to 73.2%

22 Supply Current 1 2 Current +Vcore– unipolar scaled to 61%

24 Supply Current 2 2 Current +Vlvd– unipolar scaled to 61%

26 Supply Current 3 2 Current +Vah– unipolar scaled to 61%

28 Supply Current 4 2 Current +Va– unipolar scaled to 61%

30 Supply Current 5 2 Current -Va– unipolar scaled to 61%

32 Status Word 2 For future expansion

34 ACK/NAK 1 ACK if command correct/NAK otherwise

35 Check Digit 1 2’s compliment of sum of all other bytes

 Total 36 36 x 8 = 288 clocks on the SPI Interface

All firmware was written in C (plus one assembly file) and compiled/built (to hex file)
using Kiel uVision3. The microcontroller itself was programmed using Atmel FLIP 2.46
utility. Project file, hex file, and all code stored in SCUBA2 CVS repository in PSUC
card directory.

The high level operation of the PSUC firmware is given diagrammatically in Figure 2
below.

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

Time to Poll
Data?

START

Init()

Sequence_On() Begin Main Loop

Serial
Message
Received?

Update_Data_Block()
poll_data = CLEAR

Command ‘R’ Command ‘V’

Reset MCE Send Serial
Software Version

Update SREQ

CC Command
to Act on? ‘CP’ Command ‘RM’

Command ‘TO’ Command

Reset MCECycle Power

Send 34/36 status
block bytes
Receive CC
command

Turn Off

SREQ
asserted

Send Serial
Software Version

Listen for Serial Message
over RS-232

Listen for SREQ from Clock
Card

Update data every 320ms

Send data to CC (request
period ~2s)

If command received from
CC, act on it

Y

N

Y Y

N N

N

N

Y

Y

Y

Y Y Y

N N N

Status Word request not considered as a
‘command’ here because PSUC response

is same as to an erroneous command.
Difference is erroneous command will be

NAK’d.

N

SCUBAPS.c - High Level Flow Chart - PSUC Firmware Version 2.3

Soft_Reset()

Parse
Command

Update ACK/NAK
Calculate CHECKSUM

Send last 2 bytes

Clear Watchdog
Counter

Watchdog
Counter
Overflow

External Soft
Reset

Timer 2 Interrupt

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

Summary of high level operation:

On initial power-up / hard reset1, the init() function is run first. This routine sets all
internal registers, initializes software variables, checks which external devices are
connected (DS18S20), and performs all ‘1-Time only’ tasks (i.e. getting PSU silicon ID).
Next, the firmware version is dumped out the serial port (whether or not anything is
listening) and power supply outputs are sequenced on. Next begins the main loop.

The main loop operates as follows:

First it checks if a serial message (command) has been received (very rare event). If so, it
acts on the two possible commands, Reset_MCE or a Sodtware Version request. If not, it
proceeds to next step, updating SREQ. The status of this input indicates a pending CC
status request.

Next, the status of the ‘Time to Poll Data’ indicator bit is checked2 (see ‘Timer
Operation’ below). If this bit is set, Update_Data_Block() is called. This function
sequentially polls the PSUC ADCs (current/voltage) and PSU DS18S20s (temperature),
and calculates a partial checksum from this data3.

Next, the (updated) status block is sent to the CC via SPI if SREQ had been set earlier.
The delay between checking for a status block request and actually sending it is to allow
for data to be updated (in the rare case where timer for updating has expired at same time
request is issued). This ensures the CC is always sent the most current data.
If the CC has requested the status block, the first 34 (of 36) bytes will be sent. While
these bytes are being sent, the PSUC receives three commands from the CC4. These
commands are then parsed. If a valid command has been received, the ACK/NAK byte is
set to ACK; else to NAK. The final checksum is then calculated and the final two bytes
(ACK/NAK and Checksum) are sent.

Next, the PSUC acts on the CC command (if valid command received). ‘Reset MCE’,
‘Turn-Off,’ and ‘Cycle Power’ commands are as named. No action is taken for default
‘Status-Block Request’ command (program continues through the loop…).
Similarly, no action is taken for an invalid command. However in this case the invalidity
will have been indicated to the CC via the ACK/NAK byte and it is assumed the CC will
re-send its command as necessary.

Next is minor loop maintenance. The watchdog counter is cleared, with the idea being a
typical run through this loop takes much less time than it does for the watchdog counter

1 Hard reset is when reset button on PSUC is pressed (or PSA is power cycled). Soft reset is when button
on PSA front panel is pressed (reset program counter to beginning of loop only).
2 ‘Poll data’ bit set periodically every 320ms
3 This function cannot calculate the FINAL checksum value as it depends on the ACK/NAK byte…
4 Refer to “SPI Communication..” document.

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

to overflow5. Thus this counter should never overflow unless the firmware is hung
midloop somewhere (unlikely…). Loop then returns to beginning (infinite loop).

There are two cases where the program can break out of this loop. If the watchdog timer
expires, an interrupt is triggered and soft_reset() is called immeadiately. Alternatively, if
the reset button on the PSA front panel is pushed, a timer2 interrupt is triggered and
soft_reset() is again called immeadiately. The soft_reset() function resets the program
counter to the beginning of the main loop (***NOT to the beginning of the program, so
JMP address is NOT 0x0000). The advantage of this over the built-in (hard) reset is that
the outputs stay fixed in the former but not the latter, preventing inadvertent switching of
key signals such as BRST and nPSU_ON.

Timer Operation: There are three timers on the AT89 microcontroller.

Timer 0: This timer is set to always run with interrupt occurring every 32ms. On every
interrupt, it checks if the watchdog count has overflowed, and if so calls soft_reset(). In
internal variable is counted such that every 320ms the watchdog count is incremented and
the ‘Time to Poll Data’ flag is set.

Timer 1: This timer is set to overflow every 5ms when running. This timer is used solely
for the wait_time() function was allows a variable (determined by function argument)
time period to pass when needed.

Timer 2: Due to last minute design inclusion of external soft reset button, this timer is
used exclusively as an external interrupt. (no actual external interrupt pin was
available….). Timer is set to 1 value less than overflow, set to always run, and set to
increment only when soft reset front panel button pressed. On interrupt, soft_reset() is
called. Correct buffer values are automatically reloaded.

3. Functional Description

File(s) Description
SCUBA2PS.c, SCUBA2PS.h Main Program
IO.h Input/Output Settings and Global Variables
DS18S20.c, DS18S20.h DS18S20 ID/Temperature Sensor Interface
MAX1271.c MAX1271 ADC Interface
SOFT_RESET.a, SOFT_RESET.h Soft Reset Assembly Code
Table 1. Source Code File Summary

5 Watchdog set to overflow after 5.12 seconds (without a clear). Typical p

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

The following is a list of functions implemented in PSUC firmware. The code is heavily
commented and is the main reference. See Appendix.

Return Type Function Name Arguments Description / Notes
void init void Initializes hardware and software variables
void sequence_on void Powers On MCE
void sequence_off void Powers Off MCE
void reset_MCE void Resets MCE
void cycle_power void Cycle MCE Power
void send_psu_data_block void Send PSU Datablock to CC via SPI interface
void wait_time unsigned char Waits arg*5ms (millisecond wait timer)
void wait_time_x2us_plus3 unsigned char Waits arg*2us + 3us (microsecond wait timer)
void snd_msg char* Sends message pointed to by arg over RS-232
void update_data_block void Updates voltage/current/temperature readings
void check_digit void Calculates partial checksum (before ACK/NAK added)
void parse_command void Reads CC command rcv'd from first 6 bytes received from

SPI transaction
bit commands_match char*, char*, char* Returns true if the three commands rcv'd match
bit command_valid char* Returns true if command rcv'd is a valid command
Table 2. SCUBA2PS.*

SCUBA2ps.c contains the main loop and the most general functions. Main loop
operation is detailed in flowchart above. Refer to code.

Return Type Function Name Arguments Description / Notes
"Public" Functions These three functions only should be called explicitly

from the main program
bit ds_initialize char Initializes DS18S20, checks if present
void ds_get_4byte_id char, char* Reads Silicon ID, sets target value
 ds_get_temperature char, char* Reads temperature from DS memory, sets target value
"Private" Functions These functions inplicitly implement the 1-Wire Bus

protocol
 The following functions declared 'static' as they should

only be
void ds_convert_T void Start temperature conversion
bit ds_reset void Generates reset pulse, returns 1 if DS detected
void ds_write_byte unsigned char Write target byte to DS
unsigned char ds_read_byte void Read byte from DS
void ds_write_bit bit Write given bit to DS (low level)
bit ds_read_bit void Read and return bit from DS (low level)
bit read_bus void Read bus state (Physical level)
Table 3. DS18S20.*

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

This file contains functions for interfacing with the DS18S20 temperature sensors via the
‘1-Wire Bus’ Protocol. Refer to “1-Wire Communication Through Software” document6
and code. Firmware implements protocol’s strict timing requirements as described in
aforementioned document.

The only three functions which should ever be called externally (from the main file) are
initialize, get ID, and get Temperature. Temperature is stored directly in degrees Celsius
with a one bit per degree correspondence.

The DS is read by issuing a READ SCRATCHPAD command which triggers the sending
of 8 databytes. Only the first two bytes correspond to temperature, and the implemented
code terminates the transaction after these two bytes have been received. This is done to
speed up the DS transaction as it is the slowest part of the update_data_block() function.
One of the ignored bytes is a CRC check byte. This could later be used to check data
integrity, but would further slow down this process.

**Important: This code was separated from the main program file to allow for
reusability. Unfortunately, input lines are accessed on our microcontroller using custom
types ‘sbit’ and ‘sfr’ which the Kiel uVision compiler does NOT allow to be passed into
functions / pointed to. Thus, in order to reuse this code with different DS18S20s
connected to different input pins, a ‘mask’ byte is passed into the functions which
indicates which output to use7.

**Important: Current code implementation not designed for parasitic power mode. It is
likely future ECO will add DS18S20 temperature sensors into PSU box, powered
parasitically. This will require minor code modifications8.

Return Type Function

Name
Arguments Description / Notes

void read_adc char, char, bit,
char*

Reads ADC and assigns value to char*. First two chars indicate read mode
and channel, bit indicates voltage or current ADC.

Table 4. MAX12171.c

MAX1271.c contains a single function for reading a specified ADC channel. The first
two char arguments specify the channel to read and the mode9 to read with. The bit
argument selects either the Current or Voltage ADC, and the place to store the read value

6 from Dallas Semiconductor
7 Fortunately this trick is possible because all DS18S20s are on the same input (8-bit) port
8 Mainly, a couple places where software waits for response from DS will have to be replaced with
wait_time()…
9 Mode used is uni-polar, full-scale for all channels except the ground channel which uses bipolar, half-
scale.

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

is specified by the char pointer. The MAX1271 communication protocol is specified in
detail in the datasheet.

The total number of clock cycles required for a complete transaction with the MAX is 25.
As this number is not divisible by eight, it prevents efficient use of the AT89
microcontroller’s built in SPI functionality, which operates on the byte level. Thus the
MAX transaction is manually clocked at the bit level. This is done in code by disabling
the SPI interface, manually writing to and reading from the MAX, and then re-enabling
SPI. Refer to code and datasheet.

Note: A large part of the 25 clock cycle ADC transaction is waiting while the acquisition
and conversion processes takes place10. The ADC sends out a pulse on the SSTRB line
when acquisition is complete and conversion begins. As the 6th (of 12) data bits is being
clocked out from the MAX, the next control word can begin to be clocked in. Thus the
transactions can be effectively pipelined (within the same ADC), reducing time to 18
clock cycles per transaction.

PSUC Rev. F did not contain AT89 connections to either ADC’s SSTRB line. Adding
these connections was recommended by the author and implemented in Rev. G. Due to
time/priority constraints, firmware could not be updated in time to make use of these
signal lines. Future firmware updates could use these signals to improve code efficiency
(replace counted clock cycles with ‘wait for SSTRB’ where applicable) and implement
pipelined reading. However, current (non-pipelined) version takes about 80
microseconds per ADC channel and about 1 millisecond to read all 11 channels. This is
much faster than the time is takes to read from the DS18S20 (which takes about 6.5 ms
due to slow temperature conversion), so improving the efficiency of the MAX code will
only marginally improve the speed of the update_data_block() function.

All voltage channels (except ground11) are routed through a low pass filter and non-
inverting amplifier, scaled (ideally) to 73.2% of ADC full range. The MAX1271
maximum readable input voltage is 4.096V, so this scaling corresponds to a 3.0V input.
This implies that if all voltages are at their nominal level, the ADC should report out at
73.2% of its maximal value (i.e. should report = 0.732 * 0xFFF = 0xBB6)12 on each
channel. A grounded ADC input is also read to measure any ground offset. This channel
is the only channel read in bi-polar mode (i.e. read in negative voltage range also).

The PSU output currents are measured as follows: Each PSU output voltage signal runs
across a very small ‘shunt’ resistance13. The PSUC then receives a voltage signal from
both sides of this resistance, which is fed into a differential amplifier followed by a non-
inverting scaling amplifier. Current across the shunts is thus inferred from the voltage

10 ‘Track and Hold’
11 Ground reported in twos compliment format, 2 bits per deg. C
12 MAX1271 has 12-bit output resolution so maximum output is 0x0FFF.
13 Refer to page 4 of PSU schematic (Appendix 5.2)

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

difference and known resistances values. Current measurements are scaled to 2.5V, or
equivalently 61% of full range (i.e. at nominal current levels, ADCs will output 0.61 *
0xFFF = 0x9C2 on each channel).

Return Type Function
Name

Arguments Description / Notes

void soft_reset void Resets program counter to beginning of main loop (does not affect state of
outputs)

Table 5. SOFT_RESET.*

As the soft_reset function is so small is included here:

;----------------------------
?PR?SOFT_RESET SEGMENT CODE
RSEG ?PR?SOFT_RESET
USING 0

; C prototype: void soft_reset (void);
PUBLIC soft_reset

soft_reset: POP ACC ; pop return address
 POP ACC
 CLR A ; push 0 as new

ADD A, #0xD4 ; lower order adress byte
 PUSH ACC ; return address to stack
 CLR A
 ADD A, #0x02 ; higher order adress byte
 PUSH ACC
 RETI ; execute return of interrupt
 END

The point of this code is to reset the program counter to the beginning of the main loop.
The reset jumps here, and not to the beginning of the program (address 0x0000) in order
to maintain the state of the outputs, specifically not to cause an inadvertent reset or power
glitch. The built in reset functions (in the AT89 library) are intrinsically hard resets; they
cause a jump to the beginning of the program and cause outputs to momentary return to
default values.

**This code is implemented in assembly solely because it must be able to function
correctly when being called after an interrupt. The watchdog timer and soft reset button
are both pointless if they are not acted on immediately. The original implementation of
this function was done in C by type casting the reset vector address to a function pointer,
this but failed to work correctly because it did not clear the AT89 interrupt system. Thus
the above assembly code was used.

Physics and Astronomy Dept. Stuart Hadfield
UBC 3/9/2007 1:21 PM
SCUBA-2 Project SC2-ELE-S585-504
 Version 1.3

The code works as follows: After an interrupt has been triggered the AT89 will store the
current program counter address in the stack and jump to the interrupt address. After this
jump, the above code is executed, which pops the return address of the stack, pushes the
desired address back on, and then executes return from the interrupt. The program thus
returns (‘resets’) to the desired point in the program.

This code was implemented in a separate assembly file. A header file simply declares the
C style header of this function so that it can be called from the main C program. Inline
assembly inclusion was originally attempted but abandoned due to compiler issues.

****Important: In the above code, the return address is 0x02D4. This address is not
fixed and must be recalculated every time any part of the PSUC firmware has been
modified. This is done be compiling the modified firmware in Kiel, and entering the
debugging mode. Set a break point at the beginning of the main loop (desired jump
point) and select ‘Run to Break Point’. Open disassembly window. Cursor should be at
break point, which gives the desired address. This address must then be changed in the
soft_reset.a file.

**The program is very sensitive to this reset address value and an error here could cause
unpredictable consequences.

4. Future Versions / Features
 EEPROM Support (needs specs + new commands..)
 More SPI/Serial commands

5. Other
Fans omitted from inside PSA. Thus firmware design, specifically timer allocation, was
optimized for not measuring fan speed.

5. Appendix
PSUC Firmware C Code: See \scuba2_repository\cards\psuc_card\PSUC Firmware

Code to be included here if necessary.

