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Spin-Orbit Effects in a GaAs Quantum Dot in a Parallel Magnetic Field
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We analyze the effects of spin-orbit coupling on fluctuations of the conductance of a quantum dot
fabricated in a GaAs heterostructure. Counterintuitively we argue that spin-orbit effects may become
important in the presence of a large parallel magnetic field Bk, even if they are negligible for Bk � 0.
This should be manifest in the level repulsion of a closed dot, and in reduced conductance fluctuations
in dots with a small number of open channels in each lead, for large Bk. Our picture is consistent with
the experimental observations of Folk et al.
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Recent experiments by Folk et al. [1] studied statistics
of fluctuations of the conductance g through a quantum dot
in a GaAs heterostructure with an applied magnetic field
Bk in the plane of the sample. In the largest dots studied,
the application of Bjj was observed to reduce the variance
of the fluctuations, var�g�, by a factor of roughly 4, in con-
trast to a reduction factor of 2, which was originally ex-
pected. As noted by Folk et al., the extra reduction might
be understood if, for some reason, spin-orbit coupling in-
creased with the application of Bk.

While naively one might expect Bk to align the electron
spin in such a way that makes the spin-orbit coupling less
effective, in this Letter we argue that the confinement of
an electron to a quantum dot in a GaAs structure leads
to an opposite effect. This effect could well explain the
observations of Ref. [1]. Similar effects should appear in
the repulsion between energy levels in a closed dot. Our
conclusions may allow for future experiments where spin
and electronic properties are studied with the spin-orbit
scattering rate being a controlled parameter.

In a single particle picture, conductance fluctuations
through a chaotic or disordered quantum dot may be
crudely understood as arising from fluctuations in the
number of electronic levels in an energy window of size
2ND, and in the matrix elements coupling these levels
to the leads. Here D is the mean level spacing in the
dot, for each spin state, and N is the number of channels
in each lead, (i.e., each lead has conductance 2Ne2�h).
We assume the leads to be perfectly coupled to the dot,
such that Coulomb blockade effects are insignificant. The
mean conductance in this geometry, including both spin
states, is �g� � Ne2�h. In the experiments of Ref. [1], N
was in the range 1 to 3.

In the experiments of Ref. [1], a weak perpendicular
magnetic field B� was applied. This field was strong
enough to break time-reversal symmetry for the orbital
motion, but not strong enough to produce a significant
Zeeman splitting. Then, if spin-orbit coupling is absent
and Bk � 0, conductance fluctuations should satisfy

var�g� � 4CN , �no spin-orbit, Bjj � 0� , (1)
0031-9007�01�86(10)�2106(4)$15.00
where the constant CN is var�g� for spinless electrons in a
dot with N open channels per lead, and the factor 4 results
from the degeneracy of the two spin states. (From here on
we measure all conductances in units of e2�h, so that CN is
dimensionless.) The factor CN depends on the temperature
T through the ratio T�h̄G (where G � ND�p h̄ is the
escape rate from the dot) and on the phase breaking rate
t

21
f through the parameter Gtf. The value of CN can be

calculated from random matrix theory (RMT), using the
Gaussian unitary ensemble (GUE).

For Bk fi 0, still in the absence of spin-orbit coupling,
the Fermi levels for spin-up and spin-down electrons are
split by the Zeeman energy EZ � g�mBBk. When EZ is
larger than both T and G, the contributions from the two
spin states become statistically independent, giving

var�g� � 2CN �no spin-orbit, EZ ¿ G,T � . (2)

However, in the presence of a strong spin-orbit coupling,
the two spin levels will be mixed, and will be described by
a single GUE, with mean level spacing D�2, and 2N open
channels in each lead. (Recall that Kramers degeneracy is
already broken by B�.) Thus in that case,

var�g� � C2N �strong spin-orbit� . (3)

The crossover to strong spin-orbit coupling should be
controlled by the dimensionless parameter l � eso�D

where eso is the root-mean-square (rms) value of the
matrix element �ijHsojj�. Here the states i, j have op-
posite spin directions and orbital energies that differ by
EZ . (The matrix element is to be calculated with the dot
isolated from the leads. The same parameter l controls
the repulsion between levels of opposite spins in the
closed dot.) Then in the presence of Bjj we can write

var�g�Bjj
� FN �l,T�h̄G, Gtf� , (4)

where FN ! 2CN for l ! 0, and FN ! C2N for l suffi-
ciently large. Note that G is unchanged if N is doubled and
D is halved, so G remains constant as one varies l. We
shall also see that at least approximately, CN � C2N , so
that FN decreases by a factor of 2 as l varies from 0 to `.
Then, if the system parameters are such that l grows from
© 2001 The American Physical Society
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zero to a large value as a parallel field Bjj is turned on, the
factor-of-2 reduction in F, combined with the factor-of-2
reduction on breaking the spin degeneracy, should lead to
overall reduction of a factor of �4 in var�g�, relative to
the Bjj � 0 value, in Eq. (1). This is in accord with the
observation of Ref. [1].

A variety of evidence, based on RMT and other ap-
proaches, suggests that for a large N , CN is independent of
N , for any fixed value of G, T , and tf [2–6]. The biggest
deviation from this is presumably for N � 1 and no de-
phasing. At T � 0, with no dephasing, the value of CN

is known, within RMT, to be �16 2 4N22�21 [2]. Thus
for N � 1, the reduction factor FN �0, 0, `��FN �`, 0, `� is
5�2 rather than 2.

We define a crossover value lc where var�g� is halfway
between the values for l � 0 and l large. We may es-
timate lc as the value of l such that t21

so � t
21
f 1 G,

where t21
so � 2pl2D�h̄ is the rate for spin flip due to

spin-orbit coupling, given by Fermi’s golden rule. Writing
Neff � N 1 p h̄�Dtf�21, this gives

lc � 0.23N
1�2
eff . (5)

Numerical calculations, discussed further below and illus-
trated in Fig. 1, are at least qualitatively consistent with
this estimate, but suggest that the factor 0.23 should be re-
placed by 0.1.

Spin-orbit coupling in GaAs heterostructures originates
from the asymmetry of the potential creating the two-
dimensional electron gas (2DEG) (Rashba term) and from
the lack of inversion symmetry in the GaAs lattice structure
(Dresselhaus term). The operator describing the spin-orbit
coupling is composed of both terms:
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FIG. 1. Variance of conductance for the case N � 1, t21
f �

0, as a function of the coupling l, for T � 0 and T � D.
Asymptotes show known results for l � 0 and l � ` at T � 0.
Data for T � D were scaled by a factor of 5.5. The inset shows
schematic behavior of l as a function of the Zeeman energy EZ ,
following Eqs. (8) and (10).
Hso � g� �y 3 �s� ? ẑ 1 h�yxsx 2 yysy� , (6)

where �y is the velocity operator, �s are the Pauli spin ma-
trices, g and h are coupling constants, and we ignore
terms ~ y3. We assume that the 2DEG is grown on a
[001] GaAs plane and x, y denote the cubic axes in the
plane. Note that this spin-orbit coupling is different from
the one encountered in measurements of conductance fluc-
tuations in metals. The latter is induced by impurities, and
is characterized by coupling constants that strongly vary
with position.

In the absence of Hso, the eigenstates of the elec-
tronic Hamiltonian are products of a spatial part ja�
and a spin part js�, where s � " �#� denotes spin par-
allel (antiparallel) to the Zeeman field �Bk. With Hso,
the mean-square value of the dimensionless spin-orbit
coupling l for states with opposite spins at the Fermi
energy is

l2�EZ� �
X
ab

j�Hso�a",b#j2d�ea 2 eb 2 EZ�d�ea 2 eF� ,

(7)

where ea, eb are the orbital energies of the states ja� and
jb� (i.e., the energies at Bjj � 0), the overbar denotes av-
eraging over disorder, and eF is the Fermi energy. Here
and henceforth Os1,s2 � �s1jOjs2�. As we now show, in a
quantum dot the typical matrix element �Hso�a",b# depends
on the energy difference ea 2 eb , so that l2 does indeed
depend on EZ .

For simplicity, we first discuss the case where h � 0
in Hso, and we choose �Bk k x̂. For a macroscopic system
in the diffusive regime, comparing the Kubo-Greenwood
formula with the Drude formula, one finds

j�yx�abj2 �
2DD

p h̄
1

1 1 �vt�2 , (8)

where h̄v � ea 2 eb , t is the transport lifetime, and
D � y

2
Ft�2 is the diffusion constant. Thus, for a large dif-

fusive system and for vt ø 1, we findl � gyF

D � Dt

p h̄ �1�2,
which does not depend on v. A parallel field does
not affect the strength of spin-orbit coupling as long
as EZ ø h̄�t.

In contrast, the confinement of the electron to a quantum
dot suppresses the velocity matrix elements when vtR ø
1, where tR is a Thouless time, which we define as the
time for an electron to cross from the center to the edge
of the dot. This is most easily seen if we use the relation
j�yx�abj � vjxabj, and note that the matrix element of x
is bounded by the maximum radius R of the dot. More
precisely, we may use the relation

jxabj2 �
X
a

X
bfia

jxabj
2D2d�ea 2 eb 2 h̄v�d�ea 2 eF�

�
Z `

0

Ddt
p h̄

∑
dx2 2

1
2

�x�0� 2 x�t�	2

∏
aa

cosvt ,

(9)
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where the last line should be averaged over all states at the
Fermi energy; �dx2�aa � R2 is the position uncertainty in
the state a; and 
�x�0� 2 x�t�	2�aa may be approximated
by averaging over the appropriate classical trajectories.

For a dot in the diffusive regime, where yFt ø R, we
have tR � R2�2D. Then, 
�x�0� 2 x�t�	2�aa � y

2
Ft2�2

as long as t ø t; it grows as 2Dt for t , t , tR , and
finally approaches 2
dx2�aa for t . tR . Thus,

j�yx�abj2 �

8>><
>>:
c

2DD

p h̄
�vtR�2 for v , t

21
R ,

c
2DD

p h̄
for t

21
R , v , t21 ,

(10)

where c is a constant which depends on the dot’s shape.
For a roughly circular dot of radius R, c � O�1�, and we
ignore it below. The value of j�yx�abj2 falls off according
to (8) as v increases further.

For a ballistic chaotic dot, the time scales t and tR �
R�yF coincide, and D � yFR�2. The second line of
Eq. (10) does not apply. The maximum value of j�yx�ab j2
is �yFRD�p h̄, obtained when vtR � 1. From these re-
sults, we may calculate ´so and l2�EZ� � g2j�yx�abj2�D2.
For both types of dots the confinement leads to a Bjj de-
pendence of l2�v� for EZtR ø h̄ (see the inset of Fig. 1).
The maximum value of l2 is l2

max � g2yFR
p h̄D .

If g and h are both nonzero, l depends on the direc-
tion of Bk within the x-y plane. It is different, e.g., for
Bjjjj�110� and Bjjjj�110�, even for a dot which is roughly
circular. However, the average of l2 over all directions of
Bjj will be �g2 1 h2� j�yx�abj2�D2.

In order to make a comparison to the experiments
of Ref. [1], we consider a ballistic dot where g, h
are such that l�D� ø lc and lmax is greater than the
crossover value lc (see Fig. 1). At low temperatures
T ø h̄�ptR , the variance var�g� should decrease in
two stages as the Zeeman energy EZ is increased. In
the first it would drop from 4C0

N to 2C0
N over the range

0 , EZ , p max�T , h̄G�, due to the removal of spin
degeneracy of the levels. Then var�g) would drop by an
additional factor of approximately 2, resulting from the
turning on of spin-orbit coupling, over the larger range
p max�T , h̄G� , EZ , h̄�tR . (For a still larger value of
EZ , the conductance fluctuations would increase again.)
In Ref. [1], T was comparable to h̄�ptR . Under such
conditions we expect the factor-of-4 decrease in var�g� to
occur smoothly over the range 0 , EZ , h̄�tR . (Recall
that time-reversal invariance is broken by B� in all cases.)

A quantitative comparison of this scenario to the ex-
periment of Ref. [1] requires information regarding the
strength of spin-orbit coupling, which we parametrize by
the dimensionless parameter Qso � �g2 1 h2�1�2yF�EF .
In terms of Qso, for a ballistic dot lmax � QsoN

3�4
e �3,

where Ne is the number of electrons in the dot. For our
scenario to be consistent with the experiment, we need
2108
lmax to be at least comparable to lc � 0.2N
1�2
eff for the

large measured dot (where Ne � 16 000 and Neff � 6)
and smaller than lc for the small measured dot (where
Ne � 2000 and Neff � 6). These requirements suggest
5 3 1023 . Qso . 1023. There are additional numerical
uncertainties, however, because our application to ballistic
chaotic systems of formulas derived for diffusive systems
[e.g., Eq. (10)] involved several unknown numbers of or-
der unity.

Although g and h have been measured previously in
other GaAs heterostructures, the parameters depend on
details of the structure, and are difficult to extrapolate
from one system to another. Values of Qso extracted from
existing data on GaAs 2DEGs include Qso � 1.6 3 1022,
from optical measurements [7], in a sample with
n � 4 3 1011 cm22, and Qso � 5 3 1023, from
Shubnikov–de Haas measurements [8], in a sample
with n � 1.2 3 1012 cm22. Magnetoresistance mea-
surements [9] in 2DEGs extract the spin-orbit scattering
rate by studying the crossover from weak localization
to weak antilocalization as the density is increased.
At the densities where the crossover occurs, typically
around n � 6 3 1011 cm22, values around t21

so � 4 3

1010 sec21 are found in the moderate mobility samples
(l � 0.5 mm), corresponding to Qso � 4 3 1023. Our
estimates of Qso for the samples of Ref. [1], which had
n � 2 3 1011 cm22, are not incompatible with the range
of previous measurements.

The suppression of spin-orbit matrix elements by the
confinement to a dot affects also the scattering rate due to
spin-orbit coupling, t21

so . Note that spin-orbit scattering
processes do not necessarily result in a spin flip of the
electron. The probability of a spin flip in a spin-orbit
scattering process depends on the ratio g�h and on the
initial direction of the spin. We focus on the case h � 0
and initial spin state in the x-y plane, in which half of
spin-orbit scattering processes involve a spin flip. We also
set EZ � 0 for this part of the discussion. The rate of
spin flip due to a spin-orbit scattering process of a state ja�
is h̄

tso
� ImS�a, ´a�, where S�a, ´a� is the on-shell self-

energy of the state ja� due to spin-orbit scattering events,
irrespective of the final spin state.

To second order in the spin-orbit interaction, ImS�a,
´� � 2p

P
b j�Hso�a",b#j2d�e 2 eb�. Because of the finite

escape rate G * D, the d functions are broadened enough
to allow the sum to be replaced by an integral. Then, in
view of Eqs. (6), (8), and (10), the on-shell self-energy
S�a, ´a� vanishes. We go beyond this order, to a self-
consistent self-energy, where

S�a, ´a� � 2
Z d´b

D

j�Hso�a"b#j2

´a 2 ´b 2 S�b, ´a� 2 iG
,

(11)

and approximate the solution of (11) by substituting the
second order expression in its right-hand side. In the
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diffusive limit we find

1
tso

�

8>>><
>>>:

tR

t`
so

µ
1

4pt`
so

∂
1 G for

tR

t`
so

ø 1, GtR ø 1 ,

1
t`

so
for

tR

t`
so

¿ 1 ,

(12)

where 1
t`

so
� 4g2D�h̄2 is the spin-flip scattering rate in

an open system. As expected, when tR ¿ t`
so the con-

finement of electrons to the dot does not significantly af-
fect spin-orbit scattering rate. In contrast, for a small dot
spin-orbit scattering rate is suppressed. When G ø

1
t`

so
it

becomes of fourth order in the coupling constants, 1
tso

�
tR

4p�t`
so�2 . At this order, the smallness of spin-orbit matrix

elements at close energies is overcome by virtual transi-
tions of high energy difference (�t

21
R ).

The suppression of t21
so in small dots has implications

for electronic transport through the dots. Normally, for an
open system, when t21

so gets larger than t
21
f , weak local-

ization turns into weak antilocalization, and the magnetore-
sistance becomes positive. The corresponding criterion for
a quantum dot compares the reduced t21

so with �t21
f 1 G�.

In fact, the spin-orbit scattering rate relevant for transport
may be even smaller than the t21

so of (12). Even in open
2D electron structures in GaAs, there are subtleties due to
the fact that spin rotations induced by Hso are correlated
with spatial displacements of the electron. For example, as
analyzed in [10], when h � 6g, there is no weak antilo-
calization, if the cubic term, ~ y3 in Hso, is ignored [10].

Before concluding, we explain the random matrix cal-
culations leading to Fig. 1. These calculations are aimed
at studying the l dependence of var�g� in the presence
of a strong Bjj. The Hamiltonian of the closed dot was
modeled by a 2M 3 2M random matrix H of the form
Hij � hijKij where 1 , i , M labels states with spin up,
M 1 1 , i , 2M labels states with spin down, hij � 1
if i and j are states with the same spin, hij � ´so �
pl�M1�2 if i and j are states with opposite spin, and
K is a random Hermitian matrix from the GUE, with the
distribution P�K� ~ e2�1�2� trKyK . This matches the defini-
tions in the text because ´so is the rms value of the matrix
element connecting two states in the different spin blocks,
and D � p�M1�2 is the average level spacing at the center
of the band for one block. For the case N � 1, we connect
the system to “leads” with perfect conducting channels at
two sites for spin up and two sites for spin down, and cal-
culate the 2 3 2 transmission matrix t for energies near
the center of the band [11].

At T � 0 one finds the conductance by using the
Landauer formula g � trtty. To obtain results at finite T ,
for each realization of the random matrix we first calculate
the transmission matrix and thus the T � 0 conductivity
g�0��E� for a range of energies E. This conductance is
weighted by the derivative of the Fermi function and
integrated to give g�T � �

R`
2`

df
dE g�0��E�dE.
The conductance fluctuations as a function of l for zero
temperature and temperature D are shown in Fig. 1. The
data for T � D were accumulated from 5000 realizations
with M � 60, while the data for T � 0 were obtained
from 106 realizations with M � 20. More limited calcu-
lations at T � 0 with M � 60 showed differences of less
than 10% from M � 20.

It is clear from the figure that the T � D results have the
same dependence on l as the T � 0 results, and we have
evidence that this remains true for higher T . The reduc-
tion in var�g� by a factor of �6 is consistent with the theo-
retical expectation [4] that CN �T � � CN �T � 0�p h̄G�6T ,
for T $ p h̄G, if dephasing is absent. The middle of the
crossover occurs roughly at l � 0.1, which is somewhat
less than the value 0.23 given by Eq. (5).

Calculations for 2 # N # 4 at T � 0 (not shown) are
consistent with a crossover value lc scaling as N1�2, as
predicted by (5). Dephasing can also be included by using
a “third-lead” model of the type discussed by Brouwer and
Beenakker [12]. Results for N � 1 and T � 0 seem to
show a variation of lc somewhat slower than N

1�2
eff , at least

in the range 1 , Neff , 4.
In summary, we presented a theory by which the effect

of spin orbit on conductance fluctuations in a quantum
dot depends strongly on an applied parallel magnetic field.
This theory may well explain the experimental observation
of Ref. [1].
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