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Statistics and Parametric Correlations of Coulomb Blockade Peak Fluctuations
in Quantum Dots
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We report measurements of mesoscopic fluctuations of Coulomb blockade peaks in a shape-
deformable GaAs quantum dot. Distributions of peak heights agree with predicted universal functions
for both zero and nonzero magnetic fields. Parametric fluctuations of peak height and position,
measured using a two-dimensional sweep over gate voltage and magnetic field, yield autocorrelations of
height fluctuations consistent with a predicted Lorentzian-squared form for the unitary ensemble. We
discuss the dependence of the correlation field on temperature and coupling to the leads as the dot is
opened.

PACS numbers: 72.20.My, 05.45.+b, 73.23.Hk

Confined semiconductor microstructures, or quantum
dots, provide a versatile experimental system for study-
ing the crossover from microscopic quantum physics to
macroscopic physics [1]. At low temperatures, transport
through quantum dots exhibits mesoscopic fluctuations
(random but repeatable fluctuations arising from quantum
interference) [2] with universal features that are under-
stood to be connected to underlying universalities of quan-
tum chaos [3].

In this Letter, we investigate mesoscopic conductance
fluctuations in quantum dots in the Coulomb blockade
regime. This regime is of great interest because at
low temperaturesskT ø Dd transport is mediated by
tunneling through a single eigenstate of the dot and
so, in principle, provides experimental access to the
statistics of wave function fluctuations, something which
cannot be obtained in open mesoscopic samples. We find
excellent agreement with a statistical theory of Coulomb
blockade peak heights [4] in both the orthogonalsB ­ 0d
and unitarysB fi 0d ensembles. In addition, we present
for the first time parametric correlations of Coulomb
blockade peak heights as a function of magnetic field
and find good agreement with recent theory [5,6]. We
investigate the dependence of the magnetic correlation
field Bc on temperature and on the coupling of the leads,
extending from strong Coulomb blockade to several open
channels per lead. These experiments make use of a
novel multigate quantum dot design which allows shape
distortion while preserving dot area (Fig. 1, inset).

In open quantum systems, the lifetime broadening
G , "ytescape of quasibound eigenstates exceeds the
mean level spacingD. Interference effects in open
systems include universal conductance fluctuations and
weak localization, which have been well studied over
the last decade [7]. As the system becomes classically
isolated and sufficiently coldskT , G , Dd quantum levels

become resolved. In addition, conductance in the regime
G , D is suppressed due to charge quantization whenever
the energy to add a single electron to the dot,e2yC (C
is the total capacitance of the dot), exceeds the applied

FIG. 1. (a) Temperature dependence of Coulomb peak line
shape for the larger dotsD ­ 15 meVd. Circles show fit
of base temperature peak bygygmax ­ cosh22sheVgy2kT d.
Inset: Micrograph of the larger dot.Vg1 and Vg2 are shape
distorting gates. (b) Peak width measured as FWHM of the fit
to cosh22. Linear behavior at high temperatures gives voltage-
to-energy scaleh ­ 0.12. (c) Inverse peak height decreases
with temperature forkT , D. From saturations at lowT in
(b) and (c) we estimate the electron temperature in the dot to
be 70 6 20 mK.
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bias, Vbias, an effect known as the Coulomb blockade
[8,9]. When the dot potential is tuned (for instance, via
electrostatic gates) so that the number of electrons can
fluctuate without energy cost, large conductance peaks
are observed. These peaks are nearly periodic in gate
voltage, with each peak marking a change in the number
of electrons in the dot by one.

Transport in strongly blockaded quantum dots has been
studied extensively over the last several years and forms
the basis of the ultrasensitive single-electron transistor
(SET) technology [1,10]. Mesoscopic fluctuations were
alluded to in several blockade experiments [11–13] but
were not the primary focus of these earlier works. Phase
coherence in the Coulomb blockade regime has also been
investigated recently [14]. The first systematic experi-
mental study of the distribution of Coulomb blockade
peaks has recently been reported by Changet al. [15], and
addresses some of the issues reported here.

Statistical theories of both the distribution and cor-
relation of Coulomb blockade peaks have been devel-
oped for the low-temperature regime,G ø kT ø D.
Jalabert, Stone, and Alhassid [4] used random matrix the-
ory (RMT) to derive universal peak height distributions
for both systems with time-reversal symmetry (orthogonal
ensemble,B ­ 0) and systems with broken time-reversal
symmetry (unitary ensemble,B fi 0). Their results have
been extended to nonequivalent [16] and multimode [17]
leads and to the transition to chaos [18]. These studies
consider a quantum dot coupled to left and right reser-
voirs by tunneling leads with tunneling ratesGly" and
Gry". At low temperatures,G ø kT ø D (whereG ­
Gl 1 Gr ), blockade peaks have roughly equal widths
,kT , but heightsgmax that depend on the coupling of each
lead to the dot [9]

gmax ­
e2

h
p

2kT
GlGr

Gl 1 Gr
;

e2

h
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2kT
a , (1)

where a ; GlGryGsGl 1 Gr d is a dimensionless peak
height. Fluctuations ingmax arise from changes inGl

and Gr with external parameters such as magnetic field
or dot shape and with the number of electrons in the dot.
Assuming statistically identical and independent leads
sGl ­ Gr ­ Gy2d and ignoring spin-orbit scattering, one
obtains the following universal peak height probability
distributions:

PsB­0dsad ­
q

2ypa e22a , (2a)

PsBfi0dsad ­ 4afK0s2ad 1 K1s2adge22a , (2b)

whereK0 andK1 are modified Bessel functions [4,16].
When a continuous parameterX is used to change

the partial widthsGlsrd, and hence induce fluctuations
in peak heights, one may also consider correlations
of gmaxsXd [5,6]. We have measured peak height as
a function of magnetic fieldB and obtained autocor-

relations CsDBd ­ kg̃maxsBdg̃maxsB 1 DBdlByvarsgmaxdB,
whereg̃max ­ gmax 2 kgmaxl is the deviation from the av-
erage peak height. Alhassid and Attias [5] show using
RMT that the generic peak height autocorrelationCsDXd
in the regimeG ø kT ø D is approximately Lorentzian
in the orthogonal ensemble and Lorentzian squared in the
unitary ensemble. For finite magnetic fields we therefore
expect

CsDBd ­ f1 1 sDByBcd2g22. (3)

The correlation fieldBc is typically smaller than one flux
quantumf0 through the dot,BcA , kf0stcrossytHd1y2,
wheretH ­ "yD is the time scale to resolve individual
levels, tcross ,

p
AyyF is the time to cross the dot, and

k depends on the shape of the dot [18,19]. Parametric
correlations of density-of-states fluctuations have been
measured in vertical transport by Sivanet al. [20] and also
gave good agreement with theory.

The quantum dots [Fig. 1(a)] were defined by electron
beam lithography on a GaAs/AlGaAs heterostructure
using Cr/Au gates 800 Å above the two-dimensional
electron gas (2DEG). A mobility of 106 cm2/V s and
density of3.5 3 1011 cm22 give a Fermi wavelength of
lF ­ 41 nm and a transport mean free path of 9mm, so
that transport within the dot is ballistic. The dots were
coupled to bulk 2DEG by individually adjustable point
contact leads. In addition, small changes to the shape
and area could be controlled nearly independently from
the dot conductance by varying voltagesVg1 and Vg2 on
two shape-distorting gates. We report measurements on
two similar dots with areas (and mean level spacingsD ­
2p"2ympA) of 0.32 mm2 sD , 22 meVd and 0.47mm2

sD , 15 meVd, assuming ,100 nm depletion around
the gates. Conductance was measured in a dilution
refrigerator sTbase ­ 30 mKd using a lock-in amplifier
with an ac voltage bias of5 mV rms at 11 Hz.

Figure 1 shows the temperature dependence of a typi-
cal Coulomb blockade peak for the larger dot. For
G ø kT ø D one expects a thermally broadened peak
shape in gate voltage (relative to peak center),gygmax ­
cosh22sheVgy2kT d and gmax ~ T 21 as given in Eq. (1).
For kT . D this smoothly crosses over togygmax ø
cosh22sheVgy2.5kT d and a temperature independentgmax

[9]. Figure 1(a) shows a fit of the base temperature peak
by the cosh22 form, and Fig. 1(b) shows the FWHM
extracted from similar fits at each temperature. Above
200 mK, we find FWHM~ T , which we use to find the
scaling factorh ­ CgateyC , 0.12 (0.090) for the larger
(smaller) dot to convert gate voltageVg1 to dot energy.
Using this value ofh, the Coulomb peak separation of
,5 mV gives a charging energye2yC of 620 meV, or
C ­ 260 aF. The electron temperature in the dot was
estimated to be70 6 20 mK based on saturation of
peak width [Fig. 1(b)] and deviation fromgmax ~ T21

[Fig. 1(c)]. This giveskTbase , Dy2. From Eq. (1), the
typical peak heightgmax , 0.05e2yh gives a broadening
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G below 0.1D. These values place the experiment
squarely in the regimeG , kT , D; however, the strong
limit G ø kT ø D assumed by theory is not met, so
theoretical results must be applied cautiously.

Peak height statistics and correlations were found by
sweeping one shape-distorting gate voltage,Vg1, repeat-
edly over one or several peaks with either the other gate
voltage,Vg2, or B incremented at the end of each sweep,
yielding a two-dimensional raster pattern of conductance
[21]. Figure 2 shows peak height distributions for both
B ­ 0 andB fi 0 that are in good agreement with Eq. (2).
For each ensemble, statistics from a number of runs were
combined after first transforming each data set to the scaled
variable a using a two-parameter fit by Eq. (2). His-
tograms of the combined data are shown as probability dis-
tributions by normalizing total areas to unity.

Rastering overVg1 and Vg2 yields Coulomb block-
ade ridges along lines of constant dot area [Fig. 2(b),
inset]. Because of shape distortion, ridge heights fluc-
tuate through,3 correlation lengths over the accessible
range of gate voltages,,0.3 V. The capability to distort
shape greatly extends the available data set (particularly at
B ­ 0) as originally suggested by Bruus and Stone [18].
Vg1 can be swept over,40 peaks before the conductance
of the point contacts changes. We find that neighboring
peak heights are correlated, but correlations vanish after

FIG. 2. Distribution of Coulomb peak conductances, scaled
to dimensionless conductancesa [Eq. (2)] for (a) the orthogo-
nal sB ­ 0d ensemble and (b) the unitary ensemblesB fi 0d.
Insets: (a) Example of a set of peaks from which the dis-
tribution was obtained. (b) Grayscale plot of small region
of gate-gate sweep used to derive these distributions, show-
ing Coulomb “ridges” along lines of constant areaslighter ­
higher conductanced. Error bars assume,90 statistically inde-
pendent samples (see text).

,4 peak spacings atTbase. At higher temperatures the
correlation between neighboring peaks increases. Each
distribution in Fig. 2 represents,600 peaks, of which we
estimate,90 to be statistically independent.

As illustrated in Fig. 3, sweeps overVg1 and B allow
fluctuations in peak height and position to be measured
as a quasicontinuous function of an external parameter,
in this case magnetic field. The superposition of peak
heights [Fig. 3(a)] at6B demonstrates that even the fine
structure is repeatable. Large peak height fluctuations are
observed f

p
varsgmaxd ­ 0.01e2yh, kgmaxl ­ 0.019e2yhg,

with the amplitude dropping essentially to zero in several
places. Fluctuations in the peak position are also seen
[Fig. 3(b)]. Presumably these are a direct reflection of
the parametric motion of the energy level (or levels)
participating in tunneling. Using the scaling factorh ­
0.090, the rms peak excursion is 0.55D.

Autocorrelation functionsCsDBd (defined above) are
shown in Fig. 4(a). At base temperature,CsDBd agrees
well with the form of Eq. (3) for smallDB (x2 ­ 0.004
up to 9 mT, compared tox2 ­ 0.014 for a Lorentzian),
but systematically dips below zero at largerDB contrary
to the RMT prediction. Fits by Eq. (3) giveBc ­
8.1 6 0.5 mT at base temperature and values forBc

that increase with both temperature [Fig. 4(a), inset] and
coupling of the dot to the leads [Fig. 4(b)]. Notice in
Fig. 4(b) thatBc changes only modestly from the strong
blockade regimesG ø Dd to the open regime, where the
number of modes per leadN , pGyD exceeds 3, and
where all traces of Coulomb blockade have vanished.
Speculating on the dependence ofBc on T and G, one
may simply be able to replacetH in the expression for

FIG. 3. Fluctuations in Coulomb blockade peak height and
position as a function of magnetic field atTbase (a) Peak height
gmax at 1B (solid) and 2B (dashed) magnetic field show
symmetry and repeatability of fine structure in the data. (b)
Grayscale plot of gate voltage–magnetic field rasterslighter ­
higher conductanced. Peak heights in (a) are taken at peak
center, marked by white curve in (b). Mean level spacing
D ­ 22 meV indicated at right, after scaling byh ­ 0.09 for
the smaller dot.
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FIG. 4. (a) The magnetic field autocorrelationCsDBd of peak
height at Tbase (solid) and 300 mK (open), along with a fit
of Eq. (3) (solid curve) givingBc ­ 8.1 6 0.5 mT. Data at
Tbase are averaged over seven mutually uncorrelated peaks;
300 mK data are averaged over three peaks. Inset: Temperature
dependence of the correlation fieldBc from fits by Eq. (3).
(b) Dependence ofBc on the number of modes,N , in the
leads fglead ­ s2e2yhdNg as the dot is opened. (c) Field-
averaged conductancekglB (dashed) and correlation fieldBc
(solid) oscillate out of phase in the weak blockade regime.
Regions of stronger blockade (minima ofkglB) have largerBc.

Bc by the smallest relevant time scale—"yD, "ykT ,
or "yG —implying a square-root dependence on the
largest of these energy scales, which appears consistent
with the data. Phase breaking may also contribute to
BcsT d by increasing broadeningGtot ­ G 1 GwsT d [22].
However, theoretical estimates [23] and data from open
dots [24] suggestGwsTd , D. Further investigation is
needed to settle this question.

Finally, we observe that for weak Coulomb blockade
skgl . 0.1d Bc is modulated (in gate voltage) along with
the field-averaged conductancekglB, with the maxima of
one aligned with the minima of the other, as shown in
Fig. 4(c). This can be viewed in terms of a number-
phase uncertainty relation if at the minima ofkglB,
where number uncertainty is reduced (strongest blockade),
the corresponding increase in phase uncertainty acts to
increaseBc, in analogy to the effect of dephasing onBc in
open dots [24,25]. Note that a semiclassical explanation
would predict an effect opposite to that observed: lower
conductance implies greater dwell time which would
decreaseBc. A satisfactory quantum treatment of this
effect remains to be worked out.
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