Preprint typeset in JHEP style - HYPER VERSION

Minkowski correlation functions in AdS/CFT

James Charbonneau

Department of Physics and Astronomy, University of British Columbia,
Vancouver, BC, Canada, V6T 1Z1
E-mail: james@phas.ubc.ca

ABSTRACT: This short review was completed as a final project for String Theory II taught
by Moshe Rozali at the University of British Columbia. Its purpose is to reproduce the
calculation of the shear viscosity in a gauge theory which was originally done by Policastro,
Son and Starinets in [1]. As the paper containing the original calculation is a painfully
terse Physics Review Letter, our primary source will be the diptych [2] and [3], where the
calculation is done in the former and the technique explained in the latter. The shear
viscosity is intresting because it is a dynamic quantity that can not be calculated using the
standard AdS/CFT Euclidean formalism. A Minkowski formalism must be developed and
used directly.
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1. Introduction

In this paper we will be exploring the duality between gauge and gravity theories. We will
specifically focus on the duality between type IIb string theory on AdSs x S° and N = 4
supersymmetric Yang-Mills (SYM) theory on 4-dimensional Minkowski space. The duality
between these two theories was one fo the first explored and is well understood.

The goal of this paper is to calculate dynamic quantities in CF'T, such as diffusion rates
and viscosity, using the AdS/CFT correspondence. In order to do this it will be necessary to
work directly in a Minkowski formalism rather than the well trodden Euclidean formalism.
Though many properties can be calculated in the Euclidean formalism and Wick rotated
to obtain the Minkowski version, this is not true for dynamic variables.

The paper will start with an introduction to the Minkowski prescription of the gauge-
gravity correspondence. We will explicitly derive the form of a retarded Green’s function
in a conformal field theory given the metric of its dual. We will see why the the derivation
for Euclidean Greens functions breaks down in the Minkowski case and what must be done
to fix it.

We will then discuss how to calculate dynamic quantities from Green’s functions by
thinking of hydrodynamics as an effective field theory. The Kubo formula for the shear
viscosity will be derived.

Two thermal properties in N' =4 SYM will be calculated using the AdS/CFT corre-
spondence between the black three brane metric and A/ = 4 SYM. The first is the entropy
which comes directly from the relationships between the coupling constants required to
make the two theories dual to each other. The second quantity calculated is the shear
viscosity. Being a dynamic quantity the thermal Minkowski prescription is used.

Finally, since we’ve calculated the two properties required for it, we’ll look at the ratio
of entropy density to shear viscosity and discuss the conjecture that this as a universal
lower bound for all conformal field theories.



1.1 Parameter Matching

Since introducing why the duality exists is better left for another review, we will focus
on the parameter matching that is required for the two theories to be dual. This is the
simplest part of of the AdS/CFT dictionary and a more useful discussion can be found in
[4]. There are many other parameters and fields that match each other but they will not
be required for this discussion.

On the field theory side there are two parameters - the number of colours N and the
gauge coupling g. When the number of colours is large perturbation theory is controlled
by the 't Hooft coupling A = g2 N. On the string theory side the parameters are the string
coupling gs, the string length [5, the number of branes N, and the radius R of the AdS
space.

We will start by considering the gravity side. A single Dp-brane brane back reacts
minimally, and does not substantially curve the space-time around it, making a good
probe for singularities. This back reaction becomes significant if we stack a large number
of Dp-branes on top of each other. If the number is large enough the curvature results in
a black hole. Dp-branes become very interesting if we attach open strings to them. The
resulting theory, when quantized, will give us a gauge theory. In our case, where we are
concerned with A/ = 4 SYM gauge theory, it turns out that D3-branes give us the right
particles. Stacking a large number of D3-branes together creates a gravitational theory
with a black hole that is dual to N'=4 SYM. In creating this black hole with Dp-branes
we find that

167G = (2m)7g%1%, (1.1)
R4
T = A (1.2)

Another relationship between parameters can be found by expanding the string theory to
look like a Born-Infield action. When done, this looks remarkably like a SYM action with
a different coefficient. Gathering up what should be the gauge coupling g we get for an
arbitrary Dp-brane

g% = ?i(ms)f”*? (1.3)
= ¢% = 4ng,, for p = 3. (1.4)

We're interested in N'= 4 SYM that are created by D3-branes, so p = 3, leaving a simple
relationship between the gauge and string coupling constants.

We can rewrite these parameters in such a way to see the point of the gauge-gravity
duality,

R2
— ~VgsN ~ V. (1.5)

This tells us that doing perturbation theory with o/ = 2 on the string theory side allows
us to obtain results where the 't Hooft coupling is very large 1/ VA < 1 and vice versa.



Using the gauge-gravity correspondence it is possible to do perturbative calculations on
one side to get strong coupling results, where perturbation theory would fail, on the other
side.

2. Minkowski AdS/CFT

It might not be clear why a Minkowski formalism is needed when the FEuclidean one is so
successful, especially when the Euclidean results can be analytically continued by Wick
rotation to get the Minkowski result. This method of Wick rotating only works in systems
in thermal equilibrium. The Euclidean method, though generally easier to work with, runs
in to a problem when we want to calculate quantities that are slightly out of equilibrium. To
calculate non-equilibrium quantities retarded and advanced Green’s functions are required.
To find these Green’s functions it is necessary to take the low frequency limit. In the
Euclidean formalism the Euclidean time becomes periodic in the temperature. When the
Euclidean Green’s function is Wick rotated back to make a retarded or advanced Green’s
function, only discrete frequencies, the Matsabura frequencies, will survive. The lowest of
these frequencies is already 27T, too large to be useful, so it is necessary to calculate the
retarded Green’s function directly from a Minkowski formalism.

Minkowski gauge-gravity correspondence states that a retarded two-point correlation
function in gauge theory can be calculated by taking derivatives of the Minkowski gener-
ating functional of its dual gravity theory. On the gauge side the sources J(z) are coupled
with operators O(x). On the gravity side there is a field ¢ that is dual to the operator
O(x). The correspondence says that the expectation value of the operator is equated to
the value the field on the gravity side takes on the boundary of the theory. Technically
this means that the derivatives on the generating functional that are usually taken with
respect to the source J and now taken with respect to ¢g = ¢(r = 00).

This idea can be written more formally as

Zgaugc{‘](x)o(x)} = Zgravity[d)] ) (2'1)

Po—J
where Z

cauge A Z,.i, are the partition functions of the dual gauge and gravity theories.

Now it is clear that when we find gauge field correlation functions by taking functional
derivatives with respect to the sources J that couple to our desired operator, that on
the gravity side we actually take these derivatives with respect to the scalar field at the
boundary ¢g. This is a non-trivial statement, and it is true that there is a one-one mapping
between sources J and boundary conditions of the scalar field ¢g.

In this paper we are interested in calculating two-point correlation functions, which
are done by taking two derivatives of the generating function. The correspondence tells us
to take two derivatives of the generating function on the gravity side,

52

Gz —y) = —i(TO(z)0O(y)) = Wzgmity[

¢] (2.2)

po—J

Because there are only two derivatives with respect to ¢¢ we are only required to consider
the AdS action up to the quadratic order when looking for two point functions on the CFT



side. After equating the sources and the field at the boundary, J is still set to zero, as in
the regular method of finding correlation functions, and any higher terms in the action will
vanish.

One more piece of the AdS/CFT dictionary is required before we go ahead. There is a
connection between operators and fields. Since we want to find properties of the Maxwell
field our operator is O = —L = %F 31, which corresponds to the scalar dilaton field ¢ on
the gravity side. So when we calculate correlation functions for the Maxwell field we will
always take derivatives with respect to the boundary of the dilaton field ¢q.

Let’s consider the action of a scalar field in the background that has a metric of the
form

ds? = grrdr* + g, (r)datdz” . (2.3)

A more general metric may be chosen but we are interested in this one as the AdSs; metric
conforms to it. Up to second order in ¢ the action is

S=K / dz / dr/=glg"" 0,006 + g 8,00, ¢ — m*¢?] . (2.4)
The Euler-Lagrange equations of motion follow easily,

0r (V=9 9" 0:0) + vV=9(9"" 0,0, + m*)¢ = 0. (2.5)

In order to take functional derivatives of this we need to write it in terms of the boundary
fields ¢y9. We assume that ¢ has the solution

4
o) = [ e Felrnlh). (26)

and plug it in to the action

4 d4 d4k, i(k+k )z rr
S=K[d [ dr \/7 e’ (9" Or fie(r) Oy fir (1)

/Wk k‘/ —|—m fk/ ]
—K/m/ V=919 0y f (1) f ()
“kk+m)M)ﬂ(ﬂ%%ww%% (2.7)

Substituting the solution for ¢(r,z) in to the equation of motion gives the equation of
motion for fi(r),

_\/jg(glwkuku + mQ)f—k = 87"(\/jg grrarf—k) . (28)

Performing integration by parts on the first term of (2.7) and substituting in the equation
of motion for the second term yields,

4
S = K/w/d (V=39 fe()Orf-k(r)) — Fi (PO (V=G 67 B F )
+ ()0 (V=9 970 [-k)] do(k)o(—Fk)



~ K / dr / 0r (V=99 Fx (1) f1o(r)) b0 (k) o (k)

_ /( 3y V99 J(r)0 ()0 ()0 (—F)

d*k ”
- / 5 )4¢o< B)[F(ra, k) — F(ro, k)]o(K) (2.9)

where rg and ry are respectively the values for the boundary of the space and the horizon

and

F(r k) = Kv/=g9" f-k(r)0r fi(r), (2.10)

is the kernel. This is our candidate for the two-point retarded Green’s function.

To calculate the correlation function on the gravity side we follow the same prescription
we would on the field theory side. To find a two-point function we take two functional
derivatives, but now with respect to ¢o(x) instead of J(z).

The fist thing we want to do is rewrite the action in position space. To do so we define

on(h) = [ dtacon(a) (2.11)
/d4ye e holy (2.12)
Flo—y) = / PR (2.13)
The action then becomes
/d4 /d4y¢o F(ru,x —y) — F(rg,z —y)]do(y) . (2.14)

We place this into the partition function and we can now take functional derivatives of it.
The two-piont correlation function is given by,

< 0|TO(x1)O(z2)|0 >

e B R PR RNC)
Zy 0o (1) dpo(z2)
I e o N
- U dy[F (ru,z1 — y) — Flre 21— 9)]do(y)

+ / d*x¢o(2)[F(ru,x — 1) — F(rg,x — xl)]eis[%(”)’%(y)]}
¢$0=0

= i[F(rg,z1 — x2) + F(rg,z2 — x1)] — i[F(ru, z1 — x2) + F(rg,x2 — z1)] . (2.15)

Taking the fourier transform of this, the propatator in momentum space is,
< 0[TO(K)O(0)[0 >=i[F(rg, k) + F(rs, —k)] — i[F(ru, k) + F(ra, —k)] . (2.16)
The retarded Green’s function in momentum space is defined as,

GR(k) = —i < 0]TO(k)O(0)[0 >, (2.17)



which means that
G"(k) = [F(rg, k) + F(rg, —k)] — [F(ra, k) + F(ru, —k)] . (2.18)

Which is great. The problem is that retarded Green’s functions are supposed to be
imaginary, and this is real. We can prove it by first noticing that fi(r) is the Fourier
transform of a real function. It then has the property fx(r)* = f_i(r). Then F(r, k) can
be written as,

F(r,k) = Kv/=g9"" [ (r)0r fi(r)
= F(r,—k)*, (2.19)

then the Green’s function can be written,

G*(k) = [F(rg, k)" + F(rg, k)] — [F(ru, k)" + F(ru, k)]
= Re[F(rg, k)| — Re[F(ru, k)], (2.20)

as a real function. Apparently blindly following the program laid out for Euclidean
AdS/CFT doesn’t work. In order to get a sensible retarded Green’s function it is nec-
essary to make a new conjecture for the relation between Minkowski correlation functions
on the CFT side and the correlation functions on the gravity side.
These difficulties can be avoided if we conjecture that
TH
G*(k) = —2F(k,r) . (2.21)

B
This is where the real conjecture for calculating Minkowski correlation functions occurs.
It doesn’t follow strictly by following the Euclidean AdS/CFT correspondence but it does
seem natural. The justification for it is that has worked in all testable cases. The contri-
bution from the horizon will be discarded later because we don’t want solutions that are
emitted from the horizon.

3. Kubo formula

With such rich field theory formalism in place, it is most useful now to think of hydrody-
namics as an effective field theory that describes the dynamics of a system at large distance
and time scales. However, unlike most effective field theories, hydrodynamics must be de-
scribed in terms of its equations of motion rather than its Lagrangian; dissipative terms
are very difficult to encode in a Lagrangian formalism. It should still be possible to use
the equations of motion to extract low-energy Green’s functions.

The method of finding a two point correlation function in field theory starts by coupling
a source J(z) to an operator O(z) and adding it to the existing action,

S = S+ / dkJ (2)0(x) . (3.1)



This source perturbs the system and the average value of O(x) will differ from its equilib-
rium value. When the source J(z) is tiny the perturbations are given by linear response
theory,

(O(2)) = i / da' GR(z — ) ()| (3.2)

in terms of the retarded Green’s function G*(z — 2/).
The hydrodynamic equations of motion are just the conservation laws of energy and
momentum,

8,T" =0. (3.3)

To make this a solvable system the number of independent equations must be reduced.
This is done through the assumption of local thermal equilibrium. The energy momentum
tensor must also be expanded enough that the dissipative terms appear. The elements of
the dissipative terms are then found by use of rotational symmetry. The energy momentum
tensor can be written as,

T = (e + P)utu” + Pgt" — ot (3.4)

where € is the energy density, P is the pressure, u* is the local fluid velocity, and o is the
dissipative term. The first two terms comprise the familiar equations for ideal fluids. The

dissipative term, which only has non-zero spatial components, is given by
2
oij = n | diuj + Oju; — géijakuk + (0 Oruy, (3.5)

where 7 is the shear viscosity and ( is the bulk viscosity.

In order to use our effective field theory formulation a perturbative source must be
introduced. For an energy momentum tensor this is naturally the metric. So, the hydrody-
namic equations must be generalized to curved space. We can then find the response of a
tiny perturbation of the flat metric. We’re primarily concerned with calculating dissipative
properties so we will only consider o#” in curved space,

2
oM = phepvB [77 (Voﬂw + Vg — 3gaﬁvpup> + (gagvpup] , (3.6)

where P*” = g" + utu” is a projection operator.
We choose our metric to be of the form

gij(t,x) = 035 + hij(t),  hi(t) <1 (3.7)
QOO(taX) = _]-7 gO’L(tax) =0.

The perturbation is assumed to be traceless h;;(t) = 0 and because it is spatially homoge-
neous if the fluid moves the fluid is only allowed to move uniformly u? = u’(t). But because
of parity the fluid can’t all go in one direction, so it must be stationary u# = (1, 0, 0, 0).



The metric is chosen such that the only non-zero components of P are spatial. Substi-
tuting this and g, into the dissipative term of the curved space energy momentum tensor

gives,
o = PP [ (g — T, gty + Ot — Ty ) (3.9)
2 g
+ (( - 3n> 909"’ (Oyu, — T 7pu(,)] (3.10)
= —pmpin |p2r?° 2 paT0 3.11

Components of this give either the shear or bulk viscosity. Consider an off diagonal
component of the dissipation tensor - we will find that this corresponds to a shear viscosity.
The second term can be neglected as it is a higher order in h;; than the first term leaving

us with,
o™ & PT™ PV (190 huan] (3.12)
= —1Bohay — Nh""BY" OB (3.13)
~ —100hay , (3.14)

where we have thrown out the second term due to h;; < 1.
We can compare the Fourier transform of this result to the linear response (3.2),
remembering that h;; is our source, and notice that to lowest order in w

G*(k) = —inw. (3.15)

Rearranging we see that we’ve derived the Kubo relation for the shear viscosity it terms
of a Green’s function,

n=— lim iGR(kz,w). (3.16)

w—0 W
4. Calculating thermal properties from gravity

Let’s now turn to a specific metric. We are interested in calculating correlations functions
in A/ =4 SYM theory. In the language of branes, to make N' = 4 SYM gauge theory we
take an D3-brane, attach open strings to it and solve that string theory. The particles that
come out are those found in N’ = 4 SYM. So the gravity theory dual to NV =4 SYM can
be constructed by a large number, N ~ 1/gg,, of coincident D3-branes. Each brane has a
mass M ~ 1/gsr, so N of them make a black hole with mass M ~ 1/¢2,.

The black D3-brane metric is a solution to the type IIb equations of motion at low
energy and has the form

ds® = HV2[—h(r)dt? + dx®| + H?[h(r)Ldr? + r2d032] (4.1)

where H(r) =1+ R*/r* and h(r) = 1 —rd/r. For the AdS/CFT correspondence to work
we need to take the near horizon limit of this metric, » < R, which technically amounts



to ”dropping the 1” in H(r). Dropping the 1 yields,

2 2

r 2 2 2 2
h(r)dt® + dz* + dy +dz)+T2h(r)

d82 = ﬁ (—

dr® + R%d0OZ . (4.2)

As discussed earlier this kind of metric gives rise to actions for the dilaton field ¢ of the
form,

S = —K/d4mdr\/—g;g"”8“¢8y¢ + ., (4.3)

where the coefficient K = 73R5/2x3, comes from the normalization of the dilation field.
The constant k19 = V87G is the ten-dimensional gravitational constant. Using the pa-
rameter matching discussed in the introduction it can be rewritten as r19 = 27%/TR*/N.
Substituting this in gives K = N2?/872R3.

Correlation functions of these theories were the first to be calculated, though in the
Euclidean formalism. To view these first timid steps I suggest looking at [5] and [6].

4.1 Entropy

Here we can get our first result from the AdS/CFT correspondence. The Hawking tem-
perature is determined by the even nearer horizon behaviour which is found by taylor
expanding around rg to find ror?(1 — r§/r*) = 4ro(r — rg). Ignoring the spherical part of
the metric we get,

R2

ds® = —=2(r —ro)dt? + ————
s (r—7o)dt” + 4ro(r — 1)

2 dr?. (4.4)

We can change coordinates r = rg + p?/ro to make the metric non-singular,

R? 4r2
ds* = — (dp — —2p*dt* | . 4.5
- ( P b (4.5)
Performing a Wick rotation ¢t — it and letting § = 2rgR™27 it’s clear that we're dealing
with a metric that is proportional to the flat metric expressed in polar coordinates,

dz—R—Qd 2d6> 4.6
s = =(dp+p*db?). (4.6)

We want to interpret the black hole horizon as a regular origin where locally we won’t be
able to detect any curvature such as we would if we had a conical singularity. To avoid a
conical singularity we make it flat near the origin by identifying § = 0 with # = 27 such
that 0 ~ 6 + 27. The Euclidean time 7 in thermal field theory is also periodic, but in the
inverse temperature 7 ~ 7+ 1/T. So, going around the origin once gives us the relation,
. 27’0 1 To

T=—2 (4.7)

or =20
T RT TR2’

which defines the Hawking temperature. It is the Hawking temperature on the gravity side
that we associate with finite temperature in N' =4 SU(N) SYM theory.



Calculating the entropy of the black hole using the Bekenstein-Hawking formula we can
find the entropy in N'=4 SYM by converting the parameters according to the AdS/CFT
prescription outlined in the introduction. The horizon lies at ¢ =constant and r = rg or
u = 1. The area of this surface is,

A= / dBrd®Q\/g. (4.8)

The determinant of the metric is /g = 7“8 /R? and the area of the five sphere is m3R° and
the V3 = [ d?z is an infinite spatial volume leaving,

A= 7T37”8R2 . (4.9)
We can rewrite Newton’s constant,
71.41:,28

so the entropy becomes

A TVN? [ org 3
_ 4 : 4.11
S=ic= 2 () (@-11)
7T2
= ?VP,NQT?’, (4.12)

where we have used the formula for the Hawking temperature. This agrees up to a factor
with the result calculated in the weak coupling regime. For those interested in further
reading I suggest [7] and [8]. This is a static property though and we did not need to use
the Minkowski formalism. We still haven’t calculated and dynamic property.

4.2 Viscosity

To calculate a dynamic property we want to use the Minkowski formalism outlined earlier.
To do this we still want to work in the near horizon limit, but now we want to calculate
correlation functions. The first step is to the coordinate change u = rg/r?

TR)? 2
TR hw)d? + de? + df +d2) + —2—ai® + B2, (4.13)

ds® =
° u 4u?h(u)

where we have used the Hawking temperature to rewrite the metric in terms of thermal
quantities. We see that the event horizon occurs at © = 1 and spatial infinity, the boundary
of the space, occurs at u = 0. Based on the Minkowski prescription we want to find low
frequency solutions to the equations of motion of this space. This will give us the what we
need to calculate the Green’s function on the CFT side. As found in an earlier section the
equation of motion is

Or(v/=9 9" 0r¢) + V=9(9" 0u0y)¢ = 0. (4.14)

The AdS/CFT correspondence says that the operators in the CFT side live at the
boundary of the gravity theory. To find a solution we need to impose boundary conditions

~10 -



on the gravity side. We use separation of variables to write the solution of the equation of
motion with the boundary condition ¢(k,r = 0) = ¢o(k) as,

¢(k,r) = fu(r)oo(k), (4.15)

where fi(r) is the called the mode function. Substituting the black three-brane metric into
the equation of motion with these boundary conditions we get mode equation,

1+ u? ro? €2
7 / o
Ty uh(u) Ti uh(u)? L uh(u)

fe =0, (4.16)

where prime is a derivative with respect to v and we have defined,

k

w
o = T and ¢ = T

(4.17)

The mode equation is second order differential equation with a singular point at u = 1.
When solving such equations the first thing we want to do is find the behavior of the
singularity. If we substitute

fo = (1 =) F(u) (4.18)

into the mode equation we find that has a has two possible values o« = +ito/2. This is
unlike the Euclidean case were it only takes one value. We are left with a differential
equation for F'(u) which is impossible to solve analytically. A power series representation
for F(u) in tv and €2 can be found perturbatively,

i 2u?

1+u
Flu)=1+ —1 ln ——
(W) =1+ +¥n—,

S (4.19)

For our near horizon approximation we will disregard everything but the first term
F(u) = 1.

We now have to make an interesting decision. Our solution for the wave function f
has two possible values and we must choose which is correct. The two solutions can be
written in form more conducive to our argument by doing the coordinate transformation,

In(1 —u)
Restoring the phase e~*? yields
e—iwtfk — e—iw(t—&-m) , (421)
e—iwtf]: _ eiw(t—'r‘*) ’ (422)

which take the form of plane wave solutions. The horizon lies lies at r, = 0 of the new
coordinate system. The first solution corresponds to a wave moving toward the horizon,
an incoming wave, and the second solution is a wave moving away from the horizon. The
choice of which solution to discard is simply motivated by the fact that nothing should
leave the horizon. This leaves us with one solution,

fe(u) = (1 —u?)™/2, (4.23)

- 11 -



Changing variables back to u = 73 /r? we get

rd

Using the incoming wave solution for fi(r), K = N?/872R3, \/—g = r3/R3 for the deter-
minant of the metric, and ¢"" = r2h(r)/R? we find that

N2r5h(r)
Ky\—=99" = ——5755~ 4.25
V=99 SRS (4.25)
and the kernel (2.10) of our action becomes,
N2r5h(r)
F(r)= Wf—k(r)arfk(r) : (4.26)

Recognising from earlier that f_j = f; and substituting in the incoming wave solution we
find that,

. 7TN2 To 4
N?T3
—l . (4.28)
8
We now use the conjectured relationship (2.21) to calculate the Green’s function,
G"*(k) = —2F(k,u) (4.29)
r=00
N2T3
= iw™ . (4.30)
4
We use the Kubo formula (3.16) to get
N2T3
n= z 1 (4.31)

the shear viscosity of ' = 4 SYM, where NN is the number of colours and T is the tem-
perature. Note that it differs from the literature value n = %%3 by a factor of two. I've
made an error and I can’t find it. Whenever the shear viscosity is referred to assume we
mean the accepted literature value.

5. The entropy viscosity ratio

We have calculated two thermal properties in N' = 4 SYM using the AdS/CFT correspon-
dence - the entropy (4.11) and the viscosity (4.31). If we write equation (4.11) in terms
of the entropy density s = S/V then the entropy and viscosity have, up to a constant,
identical forms. The ratio of the two is

1

47 - drkp

(with dimensionality restored) . (5.1)

» |3
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This ratio has been shown to be true for all thermal field theories in a regime to be described
by gravity duals. Corrections to this have been calculated in [9] for N/ =4 SYM and are
shown to be positive. It is natural then to conjecture a bound

n 1
" > yre (5.2)
This implies that a fluid with a finite entropy density can never truly reach zero viscosity.
The lower bound is quite small compared to the most substances. For example water
has /s ~ 380/4m. One place to look where the bound should break down is in superfluids.
Superfluids flow without dissipation, which implies zero viscosity. However, any superfluid
describes by the Landau effective theory actually has a shear viscosity, which is the prop-
erty being bounded in the conjecture. For superfluid helium the shear viscosity has been
measured in a torsion-pendulum experiment and the ratio /s remains at least 8.8 times
larger than the minimum value of h/47kp =~ 6.08 x 10~13 Ks for all ranges of temperatures
and pressures. Numerical models indicate that the shear viscosity quark-gluon plasma at
RHIC is very close to, but still above this bound. Further discussion on universality can

be found in [4], [10] and [11].

References

[1] G. Policastro, D. T. Son, and A. O. Starinets, The shear viscosity of strongly coupled N =/
supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601, [hep-th/0104066].

[2] G. Policastro, D. T. Son, and A. O. Starinets, From AdS/CFT correspondence to
hydrodynamics, JHEP 09 (2002) 043, [hep-th/0205052].

[3] D. T. Son and A. O. Starinets, Minkowski-space correlators in AdS/CFT correspondence:
Recipe and applications, JHEP 09 (2002) 042, [hep-th/0205051].

[4] D. Mateos, String Theory and Quantum Chromodynamics, Class. Quant. Grav. 24 (2007)
S713-S740, [arXiv:0709.1523].

[5] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from non-critical
string theory, Phys. Lett. B428 (1998) 105-114, [hep-th/9802109].

[6] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253-291,
[hep-th/9802150)].

[7] S. S. Gubser, I. R. Klebanov, and A. W. Peet, Entropy and Temperature of Black 3-Branes,
Phys. Rev. D54 (1996) 3915-3919, [hep-th/9602135].

[8] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, Coupling constant dependence in the
thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B534 (1998)
202-222, [hep-th/9805156].

[9] A. Buchel, J. T. Liu, and A. O. Starinets, Coupling constant dependence of the shear viscosity
in N=4 supersymmetric Yang-Mills theory, Nucl. Phys. B707 (2005) 5668,
[hep-th/0406264].

[10] D. T. Son and A. O. Starinets, Viscosity, Black Holes, and Quantum Field Theory, Ann.
Rev. Nucl. Part. Sci. 57 (2007) 95-118, [arXiv:0704.0240 [hep-th]].

[11] A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys.
Lett. B609 (2005) 392-401, [hep-th/0408095].

~13 -


http://arxiv.org/abs/hep-th/0104066
http://arxiv.org/abs/hep-th/0205052
http://arxiv.org/abs/hep-th/0205051
http://arxiv.org/abs/0709.1523
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9602135
http://arxiv.org/abs/hep-th/9805156
http://arxiv.org/abs/hep-th/0406264
http://arxiv.org/abs/arXiv:0704.0240 [hep-th]
http://arxiv.org/abs/hep-th/0408095

