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Essential Astrophysics 2015

1 Introduction and review

Several text books present an overview of astrophysics at the advanced undergraduate or introduc-
tory graduate level. You might like to refer to:

1. Longair, High Energy Astronpysics, Cambridge University Press, ISBN 978-0-521-75618-1
(2011)

2. Irwin, Astrophysics, Wiley, ISBN 978-0-470-01306-9 (2007)

3. Ryden and Peterson, Foundations of Astrophysics, Addison-Wesley, ISBN 978-0-321-59558-4
(2009)

4. Bowers and Deeming, Astrophysics II and II, Jones and Bartlett, ISBN 0-86720-018-9 (1984)

5. Rybicki and Lightman, Radiative processes in Astrophysics, Wiley, ISBN 978-0-471-82759-7
(1979)

1.1 Constants and conversion factors

Generally, it is preferable to use SI units when calculating quantities. However, these can be
cumbersome and astronomers often employ units that are more appropriate to the application.
Some typical astronomy units are listed in Table 1.1. For reference, some useful physical constants
are listed in Table 1.2.

Table 1.1: Common units used in astronomy

Name Symbol SI value

astronomical unit AU 1.4960ˆ 1011 m
parsec pc 3.0857ˆ 1016 m
light year ly 9.4607ˆ 1015 m
solar radius Rd 6.955ˆ 108 m
Earth radius R‘ 6371 km
year (Julian) y 3.15576ˆ 107 s
arcsecond arcsec 4.84814ˆ 10´6 rad
solar mass Md 1.98855ˆ 1030 kg
Earth mass M‘ 5.97219ˆ 1024 kg
electron volt eV 1.60218ˆ 10´19 J
gauss g 10´4 T
Jansky Jy 10´26 W m´2 Hz´1
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Table 1.2: Physical constants

Name Symbol SI value

speed of light in vacuum c 3.99792ˆ 108 m/s
Gravitational constant G 6.67384ˆ 10´11 M m2 kg´1

Planck constant h 6.62607ˆ 10´34 J s
reduced Planck constant ~ 1.05457ˆ 10´34 J s
Boltzmann’s constant k 1.38065ˆ 10´23 J K´1

permittivity of free space ε0 8.85419ˆ 10´12 C2 J´1 m´1

permeability of free space µ0 “ 1{ε0c
2 4π ˆ 10´7 N A´2

electron charge e 1.6021765ˆ 10´19 C
fine structure constant α “ e2{4πε0~c 7.29735ˆ 10´3

electron mass me 9.10938ˆ 10´31 kg
proton mass mp 1.67262ˆ 10´27 kg
atomic mass unit amu 1.66054ˆ 10´27 kg
hydrogen mass mH 1.67382ˆ 10´27 kg
Bohr magneton µB “ eh{4πmec 9.274ˆ 10´24 J T´1

radiation constant a “ 8π5k4{15c3h3 7.56572ˆ 10´16 J m´3 K´4

Stefan-Boltzmann constant σ “ ac{4 5.67037ˆ 10´8 W m´e K´1

1.2 Other systems of units

Gaussian units are commonly used in electromagnetic equations. In these units, quantities such as
electric and magnetic fields have different relationships to each other than in SI units. For example,
in Gaussian units, E, D, B, H, P , and M all have the same units, while in SI they are different.
It is important to be familiar with both systems. Table 1.3 gives a summary of the most relevant
relations.

In high-energy physics and cosmology natural units are commonly employed. In this system, one
sets many fundamental constants to unity. For example, in units in which c “ 1, time and distance
have the same units, metres for example (a metre of time is the length of time required for light to
travel a distance of one metre in vacuum). Energy and mass also have the same units. If ~ “ 1,
energy has units of reciprocal time. If k “ 1, temperature has the same units as energy. Typically
one chooses, c “ ~ “ k “ ε0 “ 1. It is always possible to convert the resulting equations to SI units
by using dimensional analysis to insert the “missing” constants.

A fundamental unit of mass, the Planck mass, can be formed from G, ~, and c,

mP “

ˆ

~c
G

˙1{2

“ 2.17651ˆ 10´8 kg (1.1)

For this mass, the Compton radius λc “ h{mc is about equal to the Schwarzchild radius rS “
2Gm{c2.

It is also possible to set G “ 1, in which case mP “ 1 and masses are dimensionless numbers, which
give the mass in units of the Planck mass. Similarly, distances are then in units of the Planck
length and time is in units of the Planck time. More commonly, G “ m´2

P is not set to zero but is
regarded as a coupling constant, describing the strength of the gravitational force.
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Table 1.3: Comparison between electromagnetic equations in SI, Gaussian and natural units

Name SI Gaussian Natural

Coulomb’s law F “
1

4πε0

q2

r2
F “

q2

r2
F “

1

4π

q2

r2

E “
1

4πε0

q

r2
r̂ E “

q

r2
r̂ E “

1

4π

q

r2
r̂

Biot-Savart law B “
µ0

4π

¿

Idlˆ r̂

r2
B “

1

c

¿

Idlˆ r̂

r2
B “

1

4π

¿

Idlˆ r̂

r2

Lorentz force F “ q pE ` v ˆBq F “ q

ˆ

E `
1

c
v ˆB

˙

F “ q pE ` v ˆBq

Energy density and flux U “
1

2

ˆ

ε0E
2 `

1

µ0
B2

˙

U “
1

8π

`

E2 `B2
˘

U “
1

2

`

E2 `B2
˘

S “
1

µ0
pE ˆBq S “

1

4πc
pE ˆBq S “ E ˆB

Vector and scalar potentials E “ ´∇φ´ BA
Bt

E “ ´∇φ´ 1

c

BA

Bt
E “ ´∇φ´ BA

Bt

B “ ´∇ˆA B “ ´∇ˆA B “ ´∇ˆA

Vacuum Maxwell equations ∇ ¨E “ ρ

ε0
∇ ¨E “ 4πρ ∇ ¨E “ ρ

∇ ¨B “ 0 ∇ ¨B “ 0 ∇ ¨B “ 0

∇ˆE “ ´BB
Bt

∇ˆE “ ´1

c

BB

Bt
∇ˆE “ ´BB

Bt

∇ˆB “ µ0J `
1

c2

BE

Bt
∇ˆB “

4π

c
J `

1

c

BE

Bt
∇ˆB “ J `

BE

Bt

1.3 Celestial coordinates

Astronomers often need to refer to the positions of things in the sky. This is most conveniently done
using spherical polar coordinates. One must choose a location for the origin, and the orientation.
Several systems are in use. The most common is the celestial coordinate system that has its origin at
the centre of the Earth. The z axis is aligned with the Earth’s spin axis, with the positive direction
being North. It is useful to imagine the sky as being a large sphere, the celestial sphere, centred on
the Earth. The Earth’s axis intersects the celestial sphere at the North and South celestial poles
(NCP and SCP respectively). The projection of the Earth’s equator onto the celestial sphere is a
great circle called the celestial equator.

Rather than using the polar angle θ, measured from the NCP, it is more common to use declination
δ, which is the angle measured from the celestial equator. Declination is positive in the northern
hemisphere and negative in the southern hemisphere. Obviously, δ “ π{2´ θ.

The azimuth angle φ is called right ascension and is denoted by the symbol α. It is normally
measured in hours, minutes and seconds rather than degrees (24 hours = 360 degrees). The zero
point of right ascension is the point on the celestial sphere where the Sun crosses the celestial
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(a) (b)

Figure 1.1: (a) Celestial coordinates are a non-rotating spherical coordinate system centred on the
Earth. Right ascension α is measured from the First Point of Aries γ and declination δ is measured
from the celestial equator. (b) The sky as seen by an observer at latitude l. A star is shown that
has just passed the meridian, which now has positive hour angle h.

equator from South to North. This point is called the first point of Aries and given the symbel γ.
The Sun passes it on the vernal equinox (around March 20).

A problem with this system is that the Earth’s axis precesses, due to the action of lunar and solar
tidal forces. This precession has a period of about 25,772 years and results in a slow but significant
change in the right ascension and declination of celestial objects. Therefore, when giving the
coordinates of an object it is necessary also to indicate the time, or epoch at which they are valid.
The epoch commonly used today is 12 noon on January 1, 2000 (universal time), which is called
J2000. Formulae for precession of coordinates from one epoch to another are given by J. Meeus,
“Astronomical Algorithms” (1981).

When computing the positions of celestial objects, it is also necessary to correct for aberration -
an effect due to the motion of the Earth and the finite speed of light, and nutation - a nodding
motion of the Earth’s axis due to the tidal forces of the Sun and Moon. Each effect can be as large
as „ 20 arcsec.

1.4 Spherical triangles

We often encounter triangles on a sphere when using celestial coordinates. For example, we may
need to know how far an object is from the zenith, for a given hour angle and declination. This is
easily computed using spherical triangles. A spherical triangle has sides formed by geodesics, as in
Fig 1.2. Let the arc length of the sides (the angle subtended at the centre of the sphere) be a, b,
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and c. Let the interior angles, measured on the surface of the sphere, at the vertices be A, B, and
C, where A is the vertex opposite side a, etc. Then, the spherical sine rule is

sinA

sin a
“

sinB

sin b
“

sinC

sin c
(1.2)

and the spherical cosine rule is

cos a “ cos b cos c` sin b sin c cosA, (1.3)

cos b “ cos c cos a` sin c sin a cosB, (1.4)

cos c “ cos a cos b` sin a sin b cosC. (1.5)

Figure 1.2: A spherical triangle is a triangle formed by intersecting geodesics on the surface of a
sphere.

As an example, the zenith angle ζ of an object at hour angle h and declination δ, seen from latitude
l is given by

cos ζ “ sin δ sin l ` cos δ cos l cosh. (1.6)

1.5 Time

Historically, time was based on the rotation of the Earth. The time interval between successive
transits (crossing of the meridian) of the Sun is the solar day. Subdividing this gives apparent solar
time. However because of the tilt of the Earth’s axis, and eccentricity of its orbit, this time interval
is not constant. If we average it over a year, we get mean solar time. The difference between
apparent solar time and mean solar time is the equation of time (Figure 1.3). Over a year, the
position of the Sun is the sky at noon, mean solar time, traces out a vertical figure eight called the
analemma.

The time measured with respect to the Sun at any given place is called local time. Since it depends
on position, we define universal or “Greenwich” time as the local time at 0˝ longitude (the prime
meridian). To convert local time to universal time, subtract the longitude divided by 15 (to convert
degrees to hours).

The universal time defined by the position of distant quasars, as measured by a fixed observatory
on Earth, is called UT0. However, it is affected by variations in the orientation of the Earth’s spin
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(a) (b)

Figure 1.3: (a) Equation of time. The graph shows the difference between mean solar time, read
by a watch, and apparent solar time, read from a sundial. (Drini/Zazou, Wikimedia Commons).
(b) The solar anelemma. (JPL Horizons, Wikimedia Commons).

axis (polar wandering). Correcting for this effect gives UT1, which typically differs from UT0 by
a few ms. UT1 is used by telescope control systems when pointing to celestial objects, and for
determining astrometric positions.

A further problem arises because the Earth’s rotation rate is not constant. Lunar tidal torques
are slowing the Earth’s rotation, transferring angular momentum to the Moon’s orbit. Because
of this, the mean solar day is increasing at a rate of about 1.7 ms per century. Universal Time
Coordinated (UTC) is defined by atomic clocks. As the Earth spins down, UT1 falls behind UTC.
The difference is kept to within a second by adding leap seconds to UTC as needed. UTC is the
time used for physics experiments.

Sidereal time differs from mean solar time, UT1 and UTC in that it refers to the positions of stars
(or quasars) and not the Sun. A sidereal day is the time between successive transits of stars. It is
shorter than a solar day by about 4 minutes (stars rise about 4 minutes earlier each night). To be
precise, sidereal time is the right ascension of the meridian, which of course increases as the Earth
rotates. For example, if the sidereal time is 10 hrs, a star whose right ascension is 10 hrs would just
be crossing the meridian (and therefore at its highest position in the sky). Sidereal time is useful
in determining when to observe objects. The sidereal time at midnight local time is 12.0 hours at
the vernal equinox and increases by two hours each month.

Astronomers generally use Julian dates to represent times of observations. Unlike calendar dates,
Julian days begin at noon, and are not affected by leap years. The Julian Day Number (JDN) is
an integer giving continuous count of days since noon on January 1, 4713 BC. The day starting
at noon on January 1, 2000, was JDN 2,451,545. The Julian Date (JD) is the JDN for the day
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beginning at noon UTC, plus a decimal fraction representing the fraction of the day since that
time.

A Julian year is defined to be exactly 365.25 days. Similarly, a Julian Century is exactly 36525
days. The slowing of the Earth’s rotation implies that Julian days are slowly increasing in length.
Standard algorithms are available to convert between Julian days and the Gregorian calendar.

The Reduced Julian Date equals JD ´ 2400000 and the Modified Julian Date (MJD) equals JD ´
240000.5. There is also a Truncated Julian Date that equals JD ´ 2440000.5. UNIX time (the
number of seconds since midnight January 1, 1970) equals pJD´ 2440587.5q ˆ 86400.
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2 Solar System

The Solar System consists of the Sun and four rocky terrestrial planets (Mercury, Venus, Earth and
Mars) and four gas giant Jovian planets (Jupiter, Saturn, Uranus and Neptune). There are also
numerous smaller objects including minor planets (e.g. Pluto), trans-Neptunian objects, asteroids
and comets. In addition, we have interplanetary dust, solar plasma and magnetic fields. A review
of the properties of the Solar System is beyond the scope of this course. The topic is covered in all
introductory astronomy texts and may specialized books. Here we shall just mention a few points
that have general application.

We observe the Universe from a moving platform. The Earth orbits the Sun with a speed of
approximately 30 km/s. The resulting Doppler shift affects both the radial velocities measured for
stars and also the timing of radio signals received from pulsars. Fortunately, it is easy to correct
for these effects since the Earths orbital parameters are accurately known. Normally, velocities,
positions and times for celestial objects are given in the heliocentric inertial coordinate system.

2.1 Planetary motion

To first order, the motion of planets, and smaller objects, in the solar system is described by
Kepler’s three laws of planetary motion:

1. The shape of a planet’s orbit is an ellipse with the Sun at a focus.

2. A line connecting the planet and the Sun sweeps out equal areas in equal times.

3. The square of the orbital period is proportional to the cube of the semi-major axis of the
orbit.

(a) (b)

Figure 2.1: (a) Geometry of the Kepler problem. (b) Properties of an ellipse.
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It is straightforward to show that these laws follow directly from Newton’s mechanics and law of
gravity. Since gravity is a central force, no torque acts on the planet so angular momentum is
conserved. The orbit is therefore confined to a plane perpendicular to the angular momentum
vector L. Chose a polar coordinate system pr, θq in this plane, with the Sun at the origin and let
r be a vector connecting the Sun to the planet. r̂ is a unit vector in the r direction and θ̂ is an
orthogonal unit vector. Denoting a time derivative by a dot, Newton’s laws give

:r “ ´
GM

r2
r̂. (2.1)

Expanding the LHS, noting that 9̂r “ 9θθ̂ and θ̂ “ ´ 9θr̂, and collecting coefficients of r̂ and θ̂, we
get

:r ´ r 9θ2 “ ´
GM

r2
, (2.2)

2 9r 9θ ` r:θ “ 0. (2.3)

The second equation is easily integrated to give

L “ r2 9θ (2.4)

where the constant L is the orbital angular momentum of the planet, per unit mass.

To get an equation for the orbit, we need to eliminate time. Rearranging (2.4) gives

d

dt
“ 9θ

d

dθ

“
L

r2

d

dθ
. (2.5)

Putting this into (2.2) gives
d

dθ

1

r2

dr

dθ
´

1

r
“ ´

GM

L2
. (2.6)

This can be simplified using the substitution u “ 1{r, which gives a harmonic oscillator equation

d2u

dθ2
` u “

GM

L2
. (2.7)

The general solution is

u “ A cos θ `B sin θ `
GM

L2
, (2.8)

where A and B are arbitrary constants. We are free to choose the direction corresponding to θ “ 0
and can use that freedom to set B “ 0. Defining ε “ AL2{GM the solution becomes

r “
L2{GM

1` ε cos θ
. (2.9)

Comparing this with the equation of an ellipse of eccentricity e and semi-major axis a,

r “
ap1´ ε2q

1` ε cos θ
, (2.10)
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we see that
L2

GM
“ ap1´ ε2q. (2.11)

The point of closest approach (perihelion) occurs when θ “ 0, at a distance

rp “ ap1´ εq “
L2

GMp1` εq
. (2.12)

Kepler’s second law follows from conservation of orbital angular momentum and is therefore valid
for any central force. An inverse square radial dependence of the force is required by Kepler’s first
law. Small deviations from this result in the orbit not closing, which causes a small precession of
the perihelion (the point of minimum distance from the Sun). Gravitational perturbations from
other planets cause Mercury’s orbit to precesses by about 532 arcsec per Julian century. General
relativity adds another 43 arcsec per century. Verification of this additional precession, in 1916,
was an important test of GR.

Kepler’s third law can be written more precisely in the form

P 2 “
4π2a3

Gpm1 `m2q
(2.13)

where P is the sidereal period of the orbit (in the celestial reference frame), a is the semi-major
axis and m1 and m2 are the masses of the Sun and planet. Both the Sun and the planet actually
orbit about their common centre of mass. The two orbits have the same Period and eccentricity,
but differ in their semimajor axis a1 and a2, where a1 ` a2 “ a.

Other useful formulae are the orbital energy per unit mass,

E “ ´
GMd

2a
(2.14)

The angular momentum per unit mass,

L “
a

GMdap1´ e2q (2.15)

and the orbital velocity,

v “

d

GMd

ˆ

2

r
´

1

a

˙

(2.16)

A number of celestial phenomena can be observed in the Solar System. A conjunction is the
appearance of objects close to each other in the sky. An example is Venus, which appears closest to
the Sun at superior conjunction (Venus behind the Sun) and inferior conjunction (Venus in front
of the Sun). Opposition occurs when a planet is in the opposite direction from the Sun. For objects
orbiting beyond the Earth, this generally means that they are near their minimum distance from
Earth.

The time between successive oppositions of a planet, as seen from the Earth, is called the synodic
period, Ps. It is related to the sidereal period P by

1

Ps
“

1

P‘
´

1

P
(2.17)

Page 11 of 88



Essential Astrophysics 2015

A transit occurs when a small object (in terms of angular size) passes in front of a larger object. For
example during a transit of Mercury, one sees a small black disk moving across the Sun’s face. If
the foreground object has an angular size that is comparable to, or exceeds, that of the background
object, we call this an eclipse. The Moon’s angular size is sometimes smaller than that of the Sun,
in which case we may see an annular eclipse and sometimes larger, which gives a total eclipse. The
region of the Moon’s shadow where the Sun it completely obscured is called the umbra and the
region where it is partly obscured is called the penumbra. If the Moon passes through the Earth’s
shadow, we have a lunar eclipse.

If a distant object, having small angular size, passes behind a nearby object, we call this an
occultation. An occultation of the radio source 3C48 by the Moon was instrumental in determining
a more precise position for the source, allowing its optical identification as the first known quasar.

2.2 Distance measurements

Accurate distances are among the hardest things to measure in astronomy. For solar system objects,
we might today use laser ranging, radar measurements, or timing of radio signals from space probes.
Historically, distances have been measured by less direct means. The diameter of the Earth was
first measured by Eratosthenese in 230 B.C., by measuring the angle of the shadow cast by the Sun
at noon in Alexandria on the summer solstice. He knew that on that same day, the Sun would be
directly overhead at Aswan (then called Syene) which is located on the Tropic of Cancer. Knowing
the distance between Aswan and Alexandria, he could then estimate the circumference of the Earth.
Once the diameter of the Earth is known, the distance to the Moon can be found by parallax. One
can measure the apparent position of the moon at different times during the night. After correcting
for the orbital motion, a difference remains that is due to the motion of the observer caused by
Earth rotation.

The distance to the Sun can be estimated by measuring the elongation φ of the Moon (the angle
between the Sun and Moon, as seen from the Earth when the Moon is exactly half illuminated (1/4
phase). From Figure 2.2 we see that dd “ d$ secφ. This gives an estimate of the Astronomical
Unit (AU), which is the length of the semi-major axis of the Earth’s orbit.

(a) (b)

Figure 2.2: (a) If the distance to the Moon is known, the distance to the Sun can be estimated
from the elongation φ angle of the Moon at quarter phase. (b) Properties of an ellipse.
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The distances to inner planets can now be estimated by measuring their maximum elongation
angles, and assuming circular orbits.

The distances to outer planets can be found by measuring their elongation exactly one year after
opposition. Referring to Figure 2.2b, the angle ϕ “ 2π{P , where P is the sidereal period of the
planet in years. Using the sine rule,

d♂ “
sinφ

sinpϕ` φq
dd. (2.18)

Distances to nearby stars can be found by measuring their parallax, due to the orbital motion of
the Earth. This is the basis for the definition of the parsec, which is the distance at which one
astronomical unit subtends an angle of one arcsecond.

Beyond a few tens of parsecs, stellar parallax is increasingly hard to measure. We must rely on
dynamical or statistical methods. Supernovae often produce an expanding shell of hot gas. The
radius of the shell can be determined my multiplying the expansion velocity (from the Doppler
shift of the spectral lines that it emits) by the time since the explosion. If the angular size can also
be measured, the distance can then be found.

Figure 2.3: Moving cluster parallax. From the angle θ between the cluster and the apparent point
of convergence, the proper motion and the radial velocity, one can estimate the distance to the
cluster.

Another example is moving cluster parallaxes. The Hyades star cluster has a large angular extent
on the sky, and is close enough that proper motions (angular velocity vectors) of its stars can be
found by comparing images separated by a long time interval. These vectors are found to converge
to a point several degrees away. By measuring the radial velocities of the stars (from the Doppler
shift of their spectral lines) and using simple geometry, the distance to the cluster can be found.
Referring to Figure 2.3, we see that radial and tangential velocity components are given by

vr “ v sin θ, (2.19)

vK “ v cos θ, (2.20)

where θ is the angle between the cluster and the point in the sky where the proper motion vectors
converge. The magnitude of the proper motion is µ “ vK{r from which it follows that

r “ vr tan θ{µ. (2.21)
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Such techniques extend the distance scale to hundreds of parsecs. At this point, the method of
standard candles can be used. Essentially, one finds an object whose luminosity can be inferred and
then measures its flux. The distance is then found from the inverse square law (3.14 in the next
section). Standard candles within the Galaxy include RR-Lyrae stars and Cepheid variables. RR-
Lyrae stars are pulsating stars whose luminosity lies within a reasonably-narrow range. Cepheid
variables have a wider range of luminosities, but their luminosity is related to their pulsation period
and can thus be calibrated.

With large telescopes, the distance scale can be extended to nearby galaxies by observing Cepheid’s
that they contain. At greater distances still, one can use the luminosities of the brightest stars, the
sizes and luminosities of the largest HII regions (regions of ionized gas surrounding massive stars),
or the luminosities of certain types of galaxies themselves. Obviously the distances become more
and more uncertain as the number of steps in the “distance ladder” increases.

Recently, type Ia supernovae have been used to make reasonably-accurate distance estimates for
distant galaxies. These are exploding stars, believed to result from matter accreting onto a white
dwarf. One finds that the maximum luminosity of the explosion is related to the rate of decline of
the light curve. Correcting for this gives luminosities with a scatter of less than 10%, resulting in
distance estimates that are within 20% (Figure 2.4). Distances measured from type 1a supernovae
led to the discovery that the expansion of the universe is accelerating, providing evidence for the
existence of dark energy.
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Figure 2.4: Light curves of Type 1a supernovae, before (upper panel) and after (lower panel)
correction (Perlmutter and.Schmidt (2003) arXiv:astro-ph/0303428).

Page 15 of 88



Essential Astrophysics 2015

3 Photometric and astrometric measurements

Most of what we know about the Universe comes from observations of electromagnetic radiation.
Telescopes are used to collect and detect the light, X-rays, infrared or radio waves. Detection is
done using instruments that either respond to the energy of the radiation, or motion of electrons
induced by the electromagnetic field. In all cases, the telescope system has an aperture, or effective
area, which defines the amount of radiation that is intercepted. It also has some means of selecting
the range of directions from which radiation can be detected, such as a collimator or imaging
system.

The fundamental quantity describing the radiation field is the specific intensity Iνpnq, which is the
radiant energy E flowing in the direction n per unit time, per unit solid angle, per unit perpendicular
area, per unit frequency interval.

Iν “
dE

dt dΩ dS dν
. (3.1)

The subscript ν reminds us that this quantity is a spectral density.

One can also define this in terms of angular frequency Iω. The power contained in interval dω,
must equal the power contained within the corresponding frequency interval dν “ dω{2π,

|Iωdω| “ |Iνdν|, (3.2)

therefore Iω “ Iν{2π.

Similarly, one can define Iλ wihich is the power per steradian per unit area per unit wavelength
interval. Again, |Iλdλ| “ |Iνdν|, and since λν “ c we have

Iλ “
c

λ2
Iν . (3.3)

To get the total power, per steradian, per unit area, we can integrate Iν over all (positive) frequen-
cies. This gives the intensity.

I “

ż 8

0
Iνdν. (3.4)

I will often use the term intensity to refer either to the specific intensity, or the intensity itself. In
any case, specific intensity will always be shown with the subscript, ν or λ.

If we average the intensity over all directions, we obtain the mean intensity J .

J “
1

4π

ż

4π
IdΩ (3.5)

Jν “
1

4π

ż

4π
IνdΩ (3.6)

(3.7)
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The specific energy density Uν of the radiation field can be found by dividing the energy per Hertz
per square metre per second, traveling in direction n, by the velocity c, and then integrating over
all directions. This gives

Uν “
4πJν
c

, (3.8)

U “
4πJ

c
. (3.9)

If we weight the vector n, describing the direction of propagation, by the power per unit area per
steradian propagating in that direction and integrate over all solid angles, we obtain the radiant
flux, a vector that describes the net flux of power per unit area,

F “

ż

4π
IpnqndΩ, (3.10)

Its components pFx, Fy, Fzq represent the power per square meter flowing in the x, y, and z directions
respectively.

Similarly, one defines the specific flux by

F ν “

ż

4π
IνpnqndΩ, (3.11)

These quantities also have other names. Specific intensity as sometimes called brightness, intensity
is also called radiance and flux is also called irradiance. Radio astronomers often use the symbol
B or Bν for brightness and S or Sν for flux density. You may sometimes see the symbol I being
used for irradiance. Do not confuse this with intensity!

If we integrate the flux over the entire surface S of an emitting body, we obtain the luminosity L ,
the energy emitted per unit time, or in the case of specific flux, the specific luminosity Lν ,

L “

ż

S
F ¨ dS. (3.12)

The flux at the surface of a spherical object of radius R emitting isotropically is therefore

F “
L

4πR2
r. (3.13)

and for any distance r ą R,

F “
L

4πr2
r. (3.14)
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3.1 Magnitudes

Optical astronomers often use magnitudes to describe the relative brightnesses of celestial objects.
A magnitude ma is defined by

ma “ ´2.5 log10 Fa ` Ca (3.15)

Here Fa is the flux received, at the Earth, in some wavelength or frequency band ‘a’, defined by a
transmission function Wa

Fa “

ż 8

0
FλWapλqdλ, (3.16)

and Ca is a constant. The constant is chosen so that a particular star (Vega) has magnitude equal
to zero in all wavelength bands. In the infrared part of the spectrum, the bands are chosen to avoid
wavelengths of high atmospheric absorption, as shown in Fig 3.1. An example, the Johnson-Morgan
photometric system described in Table 3.1. The magnitudes in these bands are often named by the
band (e.g. U ” mU , B ” mB, etc).

Figure 3.1: The upper panel shows atmospheric transmission. The lower panel shows transmission
curves for common photometric bands. (Sparke and Gallagher).

It is also convenient to define a magnitude that is a continuous function of frequency or wavelength,
which can be used to describe the spectrum or spectral energy distribution of an object. The AB
magnitude is defined by

mABpνq “ ´2.5 log10

ˆ

Fν
3631Jy

˙

(3.17)

The reference flux of 3631 Jy is chosen to make the AB magnitude of Vega equals 0 at a wavelength
of 555 nm.

Astronomers also use a logarithmic measure of luminosity called absolute magnitude M . This is
defined as the magnitude that an object would have if it were moved to a particular reference
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Table 3.1: Some common photometric bands

Band λeff ∆λ Fνpm “ 0q m´mABpλeffq

(um) (um) (Jy)

U 0.36 0.068 1810 0.756
B 0.44 0.098 4260 -0.174
g 0.52 0.073 3730 -0.029
V 0.55 0.089 3640 0.003
R 0.70 0.149 3080 0.179
r 0.67 0.106 4490 -0.231
I 0.79 0.125 2550 -0.384
i 0.79 0.125 4760 -0.294
z 0.91 0.118 4810 -0.305
J 1.26 0.38 1600 0.890
H 1.60 0.48 1080 1.316
K 2.22 0.70 670 1.885
L 3.40 1.20 312 2.665
M 5.00 5.70 183 3.244

distance. For stellar and extragalactic astronomy, the reference distance is 10 pc. For solar system
studies, 1 AU is used. Since the distance dependence has been removed, it follows that absolute
magnitude is related to the luminosity of the object,

Ma “ ´2.5 log10 La ` constant. (3.18)

where the constant depends on the wavelength band and reference distance.

Finally, there is also a logarithmic measure of intensity, called surface brightness µa. It is defined
as the magnitude corresponding to the flux received from one square arcsec of solid angle centred
at direction ´n. Thus

µa “ ´2.5 log10 Ia ` Ca ` 26.5721, (3.19)

where

Ia “

ż 8

0
IλWapλqdλ, (3.20)

and the numerical constant is more precisely 5 log10p180ˆ 3600{πq.

3.2 Photometric precision

The precision of photometric measurements is of course limited by noise. At optical and infrared
wavelengths, the quantum nature of light is evident and the dominant source of noise is usually
photon statistics. To first order, the arrival times of photons are uncorrelated. The number of
photons received in time ∆t is a random variable having a Poisson frequency distribution. To see
this, suppose that the average arrival rate of photons is R (photons per second). What is the
probability that no photons will arrive in time t? To find this, we divide the interval t into a large
number N of equal intervals, called bins, of size ∆t “ t{N . The probability that no photons arrive
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in time t is equal to the product of the probability that no photon arrives in the first bin, multiplied
by the probability that no photon arrives in the second bin, etc. In the limit as N Ñ 8, each of
these probabilities is 1´R∆t. Therefore,

P0ptq “
8
ź

k“0

ˆ

1´
Rt

N

˙N

“ e´Rt. (3.21)

Expressing this in terms of the expected number x “ Rt,

P0pxq “
8
ź

k“0

ˆ

1´
Rt

N

˙N

“ e´x, (3.22)

which is also called the void probability by cosmologists. Continuing, the probability that exactly
n photons arrive in time t is the product of the probabilities that no photons arrive in N ´ n bins
and that one photon arrives in each of n bins. Each of these photons could have arrived in any of
the N bins, so the arrival probability of each is NR∆t “ x, However, we do not know, or care,
which photon was in which bin, so we must divide the result by the number of permutations n!,
of hte n photons, in order to prevent over-counting. Taking the limit N Ñ 8 we get the Poisson
distribution

Pnpxq “
xn

n!
e´x. (3.23)

Clearly
8
ÿ

n“0

xn

n!
e´x “ 1, (3.24)

as expected (some number of photons arrived, even if it is zero).

The mean number of photons that arrive in time t is

〈n〉 “
8
ÿ

n“0

nPnpxq,

“

8
ÿ

n“1

xPn´1pxq,

“ x, (3.25)

And the variance is

Varpnq “
〈
n2
〉
´ 〈n〉2 “

8
ÿ

n“0

n2Pnpxq ´ x
2,

“

8
ÿ

n“0

rnpn´ 1qPnpxq ` nPnpxqs ´ x
2,

“

8
ÿ

n“2

x2Pn´2pxq ` x´ x
2,

“ x, (3.26)

We see that the variance equals the mean, so the best estimate of the RMS uncertainty in the
photon count is the square root of the actual number of photons received. For example, if 100
photons were detected when measuring the flux from a star, the relative error in the flux would
be
?

100{100 “ 0.1. So the estimated uncertainty would be 10%, which corresponds to about 0.1
magnitudes. Thus the signal-to-noise ratio, the reciprocal of the relative error, is the square root
of the number of detected photons.
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3.3 Astrometric measurements

Astrometry is the measurement of precise positions of celestial objects. For example one could take
an image of a field of stars and then measure the positions of each star by examining the number
of photons received in each pixel of the image. Normally a star image will cover several pixels. A
simple measure of the position is the centroid of the image, defined as

〈x〉 “ 1

N

ÿ

k

nkxk,

〈y〉 “ 1

N

ÿ

k

nkyk, (3.27)

(3.28)

where
N “

ÿ

k

nk (3.29)

is the total number of photons. We are often interested in the accuracy of such measurements.
Formally, we can compute the variance of 〈x〉, using the rules for adding errors. If x, y, ¨ ¨ ¨ are
uncorrelated random variables, and f is some function of them, then

Varrfpx, y, ¨ ¨ ¨ qs “

ˇ

ˇ

ˇ

ˇ

Bf

Bx

ˇ

ˇ

ˇ

ˇ

2

Varpxq `

ˇ

ˇ

ˇ

ˇ

Bf

By

ˇ

ˇ

ˇ

ˇ

2

Varpyq ` ¨ ¨ ¨ . (3.30)

This gives

Varp〈x〉q “
ÿ

k

´xk
N

¯2
Varpnkq ´

«

1

N2

ÿ

k

xknk

ff2

VarpNq,

“
1

N2

ÿ

k

x2
knk ´

1

N

«

1

N

ÿ

k

xknk

ff2

,

“
1

N

´〈
x2
〉
´ 〈x〉2

¯

”
σ2
x

N
. (3.31)

The quantity in parenthesis is the second moment of the image intensity distribution, which is
the square of the characteristic size of the image, σx. The factor of 1{N is the reciprocal of the
square of the signal to noise ratio (which as we have just seen is the square root of the number of
photons). From this we see that the uncertainty in the x position of the image centroid is equal to
the characteristic width of the image divided by the signal-to-noise ratio. In the same manner we
get a similar result for the y direction.
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4 Relativistic kinematics

In astrophysics, we are often dealing with relativistic particles that are being accelerated by elec-
tric or magnetic forces. This produces radiation, typically in the form of synchrotron or inverse-
Compton radiation. Before examining this, we begin with a short review of Special Relativity and
the concepts of spacetime and relativistic covariance.

4.1 Special Relativity and four-dimensional notation

Most relativistic equations are greatly simplified by the use of four-dimensional notation. An event
space-time can be represented by four coordinates ~x “ px0, x1, x2, x3q ” pt, x, y, zq “ pt, rq, where
we have set c “ 1.

The postulates of Special Relativity are that 1) The laws of physics are the same in all inertial
reference frames (i.e. moving with constant velocity) and 2) the speed of light c is the same in all
inertial frames. Now, imagine two frames, O and O1, moving with respect to each other with a
constant velocity. Let the the origins of the two frames coincide at t “ t1 “ 0. Suppose that at
exactly this time, a flash of light is emitted at the origin. According to the postulates of Special
Relativity, observers in both frames see a sphere of light expanding from the origin at speed c.
Therefore,

t2 ´ r2 “ t12 ´ r12 “ 0. (4.1)

Any transformation ~x1 “ Λ~x, relating the two frames, that satisfies (4.1) is a Lorentz transformation.
We shall have more to say about these shortly.

Imagine two points a and b (called events) in space-time. The quantity

∆τ “
“

pta ´ tbq
2 ´ |ra ´ rb|

2
‰1{2

(4.2)

is called the proper time interval between the two events. It has the same value in all inertial frames
and is therefore called a Lorentz invariant or scalar. If ∆τ2 ą 0 the points are said to be separated
by a timelike interval, if ∆τ2 ă 0 the interval is said to be spacelike and if ∆τ2 “ 0 it is null.

If the interval is time-like, a frame exists for which the two events have the same position, xa “ xb,
ya “ yb and za “ zb. In this frame, ∆τ2 “ pta ´ tbq

2. This shows that the proper time interval
between two events is the time interval measured by a clock that is present at both events.

In any other frame, moving at speed v with respect to this proper frame, the proper time is

∆τ “ ∆tp1´ v2q1{2

“
1

γ
∆t (4.3)

where

γ “
1

?
1´ v2

(4.4)
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is called the Lorentz factor. From this we see that the proper time interval ∆τ is never greater
than the coordinate time interval ∆t. The observer in this frame sees the “proper” clock moving
at speed v and concludes that moving clocks run slower. Taking the limit as ∆tÑ 0, we see that

dt

dτ
“ γ. (4.5)

For two points separated by an infinitesimal distance and time, the proper time interval is

dτ2 “ dt2 ´ |dr|2. (4.6)

This can be written as an inner (dot) product of two four vectors,

dτ2 “ ~dx ¨ ~dx ”
ÿ

jk

ηjkdx
jdxk, (4.7)

where

ηjk “

¨

˚

˚

˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

(4.8)

is the Minkowski metric.

It is common to omit the summation symbol seen in (4.7), with the understanding that any index
that appears twice in a term, once as a subscript and once as a superscript, will be summed over.
This is the Einstein summation convention.

Under a Lorentz transformation Λ, the components of a contravariant four-vector ~v transform
according to

v1j “ Λjkv
k, (4.9)

where Λjk is a 4ˆ 4 matrix.

There is another type of vector called a covariant vector that has a different transformation law

w1j “ wkpΛ
´1qkj . (4.10)

An example is ~B “ pBt,∇q.

From (4.9) and (4.10) we see that the inner product (dot product) of a covariant and a contravariant
vector is a scalar,

~w1 ¨ ~v1 “ w1kv
1k “ wkv

k “ ~w ¨ ~v. (4.11)

Writing this out we have
~w ¨ ~v “ w0v

0 ` w1v
1 ` w2v

2 ` w3v
3. (4.12)

Note that the signs are all positive.

The metric tensor allows us to convert covariant vectors to contravariant, and vice verca. For
example,

Bj “ ηjkBk (4.13)
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transforms like a contravariant vector. ηjk is the inverse matrix of ηjk, and in fact has exactly the
same components. One can verify directly that the matrix product is the Kronecker delta δij which
is defined to equal 1 if i “ j and 0 otherwise.

ηijηjk “ δjk. (4.14)

We will often represent a four-vector using 3+1 notation. Instead of writing ~a “ pa0, a1, a2, a3q we
just write ~a “ pa0,aq. The rule for multiplying two contravariant four-vectors (4.7) becomes

~a ¨~b “ a0b0 ´ a ¨ b. (4.15)

Note the minus sign! Similarly, the product of two covariant vectors also has a minus sign,

B2 “ ~B ¨ ~B “ B2
t ´∇2. (4.16)

Since a Lorentz transformation must keep dτ2 invariant, it follows from (4.7) that

dτ2 “ ~dx1 ¨ ~dx1 “ ηjkΛ
j
lΛ
k
mdx

ldxm, (4.17)

Comparing this with (4.7), which, with a change of labels, can be written as

dτ2 “ ηlmdx
ldxm, (4.18)

we see that
´

ηjkΛ
j
lΛ
k
m ´ ηlm

¯

dxldxm “ 0. (4.19)

This must be true for any choice of ~dx, which can only happen if

ηjkΛ
j
lΛ
k
m “ ηlm. (4.20)

This is a matrix equation, which can also be written as ΛT ηΛ “ η. Taking the determinant of both
sides and recalling that detpABC . . .q “ detpAqdetpBq detpCq . . ., gives the condition

pdet Λq2 “ 1. (4.21)

This shows that a Lorentz transformation must have determinant of ˘1. Normally one considers
only proper Lorentz transformations, for which det Λ “ 1 (a determinant of ´1 corresponds to a
mirror reflection, or change of parity). We can also restrict ourselves to isochronous transformations,
which have Λ0

0 ą 0 and therefore do not reverse the direction of time.

There is an additional condition that follows from (4.20) and that is that any Lorentz transformation
can be written in the form Λ “ exppηLq, where L is a real antisymmetric matrix. In four dimensions,
a general antisymmetric matrix contains 6 independent parameters. These correspond to the 6
degrees of freedom of a general Lorentz transformation (rotations in 3 dimensions, and boosts
along three coordinates axes).

As an example, a boost with velocity v in the x direction is represented by

Λ “

¨

˚

˚

˝

γ ´γv 0 0
´γv γ 0 0

0 0 1 0
0 0 0 1

˛

‹

‹

‚

(4.22)
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It is worth noting that the four-dimensional volume elements d4x “ dtdxdydz, is invariant un-
der Lorentz transformations. Volume elements transform in proportion to the Jacobian of the
transformation, which is just the determinant of the transformation matrix. Since det Λ “ 1,
four-dimensional volume elements are Lorentz invariant.

It also follows that the four-dimensional Dirac delta function δ4p~xq “ δptqδpxqδpyqδpzq is also
invariant. By definition,

ż

δ4~xd4x “ 1 (4.23)

in all Lorentz frames. Since the RHS is a scalar, so is the LHS.

4.2 Four-vectors

The simplest four-vector is the vector ~s that connects two events in spacetime, a and b say. It has
components ~s “ ptb ´ ta, rb ´ raq. The “length” of this vector is the proper time interval between
the two events s “ ∆τ “ p∆t2 ´ |∆r|2q1{2.

Now consider a particle (or an observer) moving through space-time. The path of the particle
(called the world line) can be represented as a time-like curve in spacetime. Points on the world
line can be labeled by the proper time τ (the time indicated by a clock moving with the particle).
The world line is completely defined by specifying the the four coordinates xj as a function of τ ,
xjpτq. Take any two points on the world line separated by an infinitesimal proper time dτ . Since
dτ is a scalar, the quantity

~u “
d~x

dτ
(4.24)

transforms like a contravariant vector under Lorentz transformations. It is called the four velocity
of the particle. Geometrically, it is a four-dimensional vector that is tangent to the world line.

It is easy to get a formula for the four-velocity of a particle in any inertial frame. Using the chain
rule and (4.5),

~u “
d~x

dτ
“
dt

dτ

d

dt
pt,xq “ γp1,vq (4.25)

Note that the four-velocity has unit “length”,

~u ¨ ~u “ γ2p1,vq ¨ p1,vq “ γ2p1´ v ¨ vq “ 1. (4.26)

and that in the rest frame of the particle, it is just p1,0q.

We have been talking about the motion a particle, but we could equally-well have been talking about
the motion of an observer. Many relativistic calculations are simplified by use of the four-velocity
of an observer.

The rest mass m of a particle is clearly a Lorentz scalar. Why? Because we have specified the frame!
All observers agree that when the particle is at rest it has mass m. If we multiply a four-vector
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by a scalar, the resulting four-component object also transforms according to (4.9) and is therefore
a four-vector. Multiplying the four-velocity of a particle by the particle’s rest mass gives another
four vector, the four-momentum of the particle.

~p “ m~u (4.27)

How should we interpret the components of the four-momentum? The timelike component,

p0 “ mu0 “ γm “ mp1´ v2q´1{2 “ m`
1

2
mv2 ` ¨ ¨ ¨ . (4.28)

Putting in the missing factors of c we see that this is just the total energy of the particle

p0 “ mc2 `
1

2
mv2 ` ¨ ¨ ¨ “ E (4.29)

The space-like part of the four momentum is the relativistic three-momentum

p “ γmv. (4.30)

Therefore, we may write ~p “ pE,pq.

Let’s compute the norm of ~p (the square of the length),

~p ¨ ~p “ pE,pq ¨ pE,pq “ E2 ´ p2. (4.31)

But this must also equal
~p ¨ ~p “ m2~u ¨ ~u “ m2. (4.32)

Comparing the two, we obtain the relativistic energy equation,

E2 “ p2c2 `m2c4. (4.33)

4.3 Doppler shift

As a second example, consider the problem of determining the frequency shift of light emitted by
a moving source. The relevant four-vectors are the four-velocity of the source, and the wave vector
describing the propagating radiation. In the rest frame of the source, ~u “ ω1p1,n1q and ~u “ p1,0q,
where here the prime denotes the rest-frame. Therefore

~u ¨ ~k “ ω1. (4.34)

In a frame in which the source moves with velocity v, we have ~u “ γp1,vq and ~k “ ωp1,nq.
Therefore

~u ¨ ~k “ ωγp1´ n ¨ vq “ ωγp1´ v cos θq, (4.35)

where θ is the angle between n and v. Since these are the same scalars, they must be equal. Hence

ω “
ω1

γp1´ v cos θq
, (4.36)

which is the relativistic Doppler relation.
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If the source is moving directly towards the observer, cos θ “ 0 and (4.36) reduces to

ω “ ω1
c

1` v

1´ v
, (4.37)

which of course is a blue shift. If the source is moving directly away from the observer, replace
v Ñ ´v to get

ω “ ω1
c

1´ v

1` v
, (4.38)

which is now corresponds to a redshift.

In the ultrarelativistic limit, v Ñ 1, (4.37) and (4.38) become

ω » 2γω1, (4.39)

ω » ω1{2γ. (4.40)

4.4 Aberration

One could turn this around and say that instead, the source is at rest and the observer is moving
with velocity ´v. In that case we would have

ω1 “
ω

γp1` v cos θ1q
. (4.41)

Both expressions are correct. Combining them we find

γ2p1´ v cos θqp1` v cos θ1q “ 1. (4.42)

which gives a relation between the angle θ1 seen in the rest frame of the source and the angle θ in
the frame of the observer. Thus we obtain the relativistic aberration relations,

cos θ “
cos θ1 ` v

1` v cos θ1
(4.43)

cos θ1 “
cos θ ´ v

1´ v cos θ
. (4.44)

Consider a source emitting radiation isotropically in its rest frame. In this frame, half of the
radiation is emitted into the hemisphere θ1 ă π{2. As seen in a frame in which the source is
moving, the same photons are confined to a cone of half angle θ. From (4.43), cos θ “ v therefore

sin θ “
a

1´ v2 “
1

γ
. (4.45)

We see that the radiation is directed forward, in the direction of motion of the source, with half of
photons confined to a code of semi-angle „ 1{γ. This, when combined with the Doppler effect and
time dilation, greatly increases the flux of radiation in the forward direction, a phenomenon known
as relativisitic beaming.

All relativistic equations can be written in terms of scalars, four-vectors and more-general objects
such as tensors and spinors. Such equations remain unchanged under Lorentz transformations and
are said to be relativisticaly covariant.

We shall have occasion to use other four-vectors, many of which are listed in Table 4.1.
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Table 4.1: Some four-vectors (c “ 1)

Name Definition

interval ~s “ p∆t,∆x,∆y,∆zq

four-velocity ~u “
d~x

dτ
“ γp1,vq “ γp1, vx, vy, vzq

four-acceleration ~a “
d~u

dτ
four-momentum ~p “ m~u “ γpE,pq

four-force ~f “
d~p

dτ
four-frequency ~k “ pω,kq “ ωp1,nq

four-current ~j “ pρ,Jq

four-potential ~A “ pφ,Aq

four-derivative ~B “

ˆ

B

Bt
,∇

˙

“ pBt, Bx, By, Bzq
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5 Electrodynamics

5.1 Maxwell’s equations in four dimensions

Electric charge q is observed to be the same for all observers, and is therefore a Lorentz scalar.
An extended charge is represented by the charge density ρ. Thus, the charge contained within a
volume dV is

dq “ ρdV. (5.1)

Now we know that a 4-volume d4x “ dtdV is also a scalar, so ρ must transform in the same way as
dt, namely as the 0-component of a four vector. To find the other three components, consider the
equation of conservation of electric charge, Btρ`∇ ¨J “ 0. This can be written in four dimensions
as

~B ¨~j, (5.2)

where
~j “ pρ,Jq (5.3)

is clearly a contravariant four-vector, called the four-current.

According to Maxwell’s equations, this current gives rise to a potential which (as we shall see) can
be represented by the four-potential

~A “ pφ,Aq. (5.4)

The quantity
F jk “ BjAk ´ BkAj . (5.5)

is an object that evidently has the transformation law

F 1jk “ ΛjlΛ
k
mF

lm. (5.6)

This is different from a vector. It is a tensor of rank 2.

F jk is called the Maxwell tensor. From the definition we see that it is antisymmetric (F jk “ ´F kj)
and therefore contains 6 independent components (p16 ´ 4q{2. By comparing this definition with
that of the scalar and vector potentials (Table 1.3), one can verify that F jk has components

F jk “

»

—

—

–

0 ´Ex ´Ey ´Ez
Ex 0 ´Bz By
Ey Bz 0 ´Bx
Ez ´By Bx 0

fi

ffi

ffi

fl

(5.7)

and that Maxwell’s equations can be written as

BjF
jk “ jk, (5.8)

BiF jk ` BjF ki ` BkF ij “ 0. (5.9)
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Usually it is simpler to work directly with the potentials. Substituting (5.5) into (5.8) we get

B2Ak ´ BjB
kAj “ jk. (5.10)

to simplify this, observe from (5.5) that, because partial derivatives commute, we could add the
gradient of any scalar χp~xq to ~A and it would not change the Maxwell tensor (and therefore the
electric and magnetic fields) at all,

BjpAk ` Bkχq ´ BkpAj ` Bjχq “ BjAk ´ BkAj ` pBjBk ´ BkBjqχ

“ BjAk ´ BkAj (5.11)

The substitution
~AÑ ~A` ~Bχ (5.12)

is called a gauge transformation.

If we choose a function χ that satisfies B2χ “ ´~B ¨ ~A, then the gauge transformation will result in

~B ¨ ~A “ 0. (5.13)

This is called the Lorentz gauge. In the Lorentz gauge, The inhomogeneous Maxwell equations,
(5.8) become a four-dimensional wave equation relating the four-current to the four-potential,

B2Ak “ jk. (5.14)

It is not hard to show that the homogeneous equations (5.9) are automatically satisfied because of
(5.5), so (5.14) represents all of Maxwell’s equations).

5.2 Transformation of electromagnetic fields

By expanding (5.6) one can obtain the transformation laws for the electric and magnetic fields. For
the case of a boost with velocity v the result is

E1K “ γ pEK ` v ˆBq , E1‖ “ E‖ (5.15)

B1K “ γ pBK ` v ˆEq , B1‖ “ B‖ (5.16)

where K and ‖ denote components perpendicular and parallel to v, respectively.

5.3 Electromagnetic invariants

From the Maxwell tensor, we can form two scalars,

1

2
F jkFjk “ B2 ´ E2, (5.17)

1

2
εjklmF

jkF lm “ ´E ¨B. (5.18)

where we have introduced the Levi-Civita tensor defined by

εj1,j2,¨¨¨ ,jn “

# 1 ifj1, j2, ¨ ¨ ¨ , jn is an even permutation of 0, 1, ¨ ¨ ¨ , n
´1 ifj1, j2, ¨ ¨ ¨ , jn is an odd permutation of 0, 1, ¨ ¨ ¨ , n

0 otherwise
(5.19)
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5.4 The Lorentz force

Recall that the nonerlativistic motion of a charge q and mass m in an electromagnetic field is given
by

m 9v “ qpE ` v ˆBq. (5.20)

In the rest frame of the particle, this becomes m 9v “ qE which matches the tensor equation

dpj

dτ
“ qF jkuk. (5.21)

Thus, the Lorentz four-force acting on a charge q moving with four-velocity ~u is

f j “ qF jkuk (5.22)

5.5 Lienard-Wiechert potentials

Let us now try to solve Maxwell’s equations (5.14) for the case of a moving point charge qptq. Start
with the equation for the 0 component, which is

B2φ “ ρ (5.23)

To simplify this, choose a reference frame in which the charge is momentarily at rest, at the origin.
The charge density ρ can then be written as

ρ “ qδ3prq, (5.24)

where δ3prq “ δpxqδpyqδpzq. Spherical symmetry tells us that the solution must be some function
of r and t only, so we write the Laplacian operator in spherical polar coordinates,

ˆ

B2

Bt2
´

1

r2

B

Br
r2 B

Br

˙

φ “ ρpt, rq (5.25)

For any r ą 0, the RHS is zero. The substitution φpt, rq “ fpt, rq{r leads to

ˆ

B2

Bt2
´
B2

Br2

˙

f “ 0 pr ą 0q. (5.26)

This is a one-dimensional wave equation that has as a solution any function of t´r or t`r. We are
only interested in waves that propagate forwards in time so we take the retarded solution fpt´ rq.
Therefore φ “ fpt´ rq{r.

The form of the function fpt´ rq can be determined by observing that φÑ8 as r Ñ 0. Therefore
the derivative with respect to r in (5.25) increases much faster than does the time derivative. In
the limit, the equation becomes

´
1

r2

B

Br
r2 Bφ

Br
“ qδ3prq, r Ñ 0. (5.27)
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We recognize this as the Coulomb problem of electrostatics, which has the solution φ “ q{4πr.
Therefore, the general solution must be

φpt, rq “
” q

4πr

ı

t´r
. (5.28)

where the bracket notation tells us that the field at pt, rq is determined by the position of the charge
at the retarded time t´ r.

Now, we would like to find the relativistic equation. The LHS is the 0-component of the four-vector,
~A. So we need to form a four-vector on the RHS that has the correct limit as v Ñ 0. The only
relevant four-vectors that we have are the four-velocity ~u of the charge and the interval ~s separating
the charge and the observer. In the frame we chosen, in which the charge is at rest, ~u “ p1,0q, and
~s “ pt, rq. Since the wave propagates at the speed of light, it follows that t “ r, and we can write
~s “ pr, rq. Therefore, the required relativistic equation is

~A “

„

q~u

4π~u ¨ ~s



t´r

. (5.29)

These solutions are called the Lienard-Wiechert potentials.
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6 Electromagnetic waves

6.1 Plane waves

In free space (5.9) reduce to the vacuum Maxwell equations,

B2Aj “ 0 (6.1)

It can be verified by direct substitution that a solution is the plane wave

Ajp~xq “ Re
”

Ajei
~k¨~x

ı

, (6.2)

where Aj are four complex coefficients and ~k “ pω,kq is a constant vector satisfying,

k2 “ kjkj “ 0. (6.3)

Thus, ω2 “ k2. Here the notation Re stands for the real part of a complex quantity. As long
as we conduct only linear operations, we can work directly with the complex equations with the
understanding that we will take the real part at the end.

The Lorentz gauge condition (5.13) tell us that

~k ¨ ~A “ kjAj “ 0. (6.4)

The Maxwell tensor for this wave can be found directly from the definition (5.5),

F jk “ BjAkei
~k¨~x ´ BkAjei

~k¨~x (6.5)

“ ipkjAk ´ kkAjqei
~k¨~x (6.6)

6.2 Electric and magnetic fields

From (5.7) we see that the electric field components are given by

Eα “ Fα0 “ ipkαA0 ´ k0Aαqei
~k¨~x,

“ Eαei~k¨~x, (6.7)

where E is a three-dimensional vector having components Eα “ kαA0 ´ k0Aα. Similarly, the
magnetic field is

Bα “ ´
1

2
εαβγFβγ ,

“ ´
i

2
εαβγpkβAγ ´ kγAβqe

i~k¨~x,

“ Bαei~k¨~x, (6.8)
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It is easy to verify that

k ¨ E “ kαEα “ 0, (6.9)

k ¨B “ kαBα “ 0, (6.10)

which shows that the electric and magnetic fields are perpendicular to the direction of propagation.

Direct substitution shows that the field invariants for the wave are both zero,

B2 ´ E2 “ F jkFjk “ 0, (6.11)

´E ¨B “
1

2
εjklmF

jkF lm “ 0, (6.12)

so we see that the electric and magnetic field vectors are orthogonal and have equal amplitude.

6.3 Energy and momentum

The energy and momentum of the electromagnetic field is described by the energy-momentum
tensor,

T jk “ ´F jlF k
l `

1

4
ηjkF lmFlm (6.13)

(See for example Landou and Lifschitz, The Classical Theory of Fields). The T 00 component of
this tensor is the energy density U , and the components T 0α, α “ 1, 2, 3 are the components of the
momentum flux vector. Since photons are massless, it follows from (4.33) that E2 “ p2c2, so these
components also the energy flux vector F , Eqn. (3.10).

The energy-momentum tensor is quadratic in the fields, so we must take the real part before
multiplying. The fields oscillate with frequency ω, so to determine the energy, we average over the
period 2π{ω. If A and B are two complex quantities that vary sinusoidally, one can show that the
time average

〈Re A Re B〉 “ 1

2
RepAB˚q. (6.14)

Substituting from (6.6) and using (6.14), we find,

T jk “ ´
1

2
F jlF ˚ k

l

“
1

2
pkjAl ´ klAjqpklA˚k ´ kkA˚l q,

“
1

2
|A|2kjkk. (6.15)

The energy density is therefore

U “ T 00 “
1

2
|A|2k0k0 “

1

2
|A|2ω2, (6.16)
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and the flux is

Fα “ T 0α “
1

2
|A|2ωkα “ Unα, (6.17)

where n “ k{|k| “ k{ω is a unit vector pointing in the direction of propagation.

We could also have computed these results from the classical formulae for energy density and the
Pointing vector (1.3). For example,

U “
1

2
pE2 `B2q, (6.18)

“ E2, (6.19)

“
1

2
pkαA0 ´ k0AαqpkαA˚0 ´ k0A˚αq,

“
1

2
pω2|A0|2 ´ 2ωA0k ¨A˚ ` ω2A ¨A˚q,

“
1

2
|A|2ω2. (6.20)

6.4 Polarization and coherence

We have seen that in a plane wave, the electric and magnetic fields are perpendicular to the direction
of propagation, which means that they are transverse waves. The direction of the electric field can
be represented by a time-independent unit three-vector ε. If this vector is vector is real the direction
of the electric vector does not change (it oscillates between positive and negative values) and we
say that the radiation is linearly polarized. If it is complex, the direction of the electric vector
rotates with time at frequency ω and we have elliptical or circular polarization.

In general, the radiation may consist of many independent photons, which have no well-defined
phase relationship to each other. Such radiation is said to be incoherent. (In quantum mechanical
terms we say that the radiation is in a “mixed state”). For either coherent or incoherent radiation,
we can construct a two dimensional matrix, defined in the transverse plane,

Iαβ “
〈
EαE˚β

〉
(6.21)

with trace I “ Iαα, and a dimensionless matrix called the polarization tensor

ραβ “
Iαβ

I
(6.22)

The polarization tensor is hermitian, ραβ “ ρ˚βα. Therefore, it can characterized by three inde-
pendent real parameters ξ1, ξ2, ξ3 which describe the degree and orientation of linear and circular
polarization.

ρ “
1

2

ˆ

1` ξ1 ξ2 ´ iξ3

ξ2 ` iξ3 1´ ξ1

˙

. (6.23)

Each of these parameters range from ´1 to 1, although the sum of their squares cannot exceed
unity. (To see this observe that det I ě 0 and det ρ “ 1´ ξ2

i ´ ξ
2
2´ ξ

2
3 . To prove the first statement,
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rotate the x, y coordinates until E1 “ 0.) They are related to the Stokes parameters (I,Q, U, V ) of
classical optics via the relations

I “ I
Q “ Iξ1,

U “ Iξ2,

V “ Iξ3, (6.24)

The tensor Iαβ, and the Stokes parameters, are additive for superpositions of incoherent radiation.
The degree of polarization is given by

P “
b

ξ2
1 ` ξ

2
2 ` ξ

2
3

“
1

I

a

Q2 ` U2 ` V 2. (6.25)
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7 Radiation by a moving charge

7.1 Larmor’s formula

We are now ready to analyze the radiation emitted by a moving charge. The Lienard-Wiechert
potentials (5.29) give the four-potential at any point ~x in spacetime. To get Maxwell tensor, we
must differentiate this field with respect to xj . While the four-velocity of the particle is not an
explicit function of xj , there is an implicit dependence because the velocity must be evaluated
at the retarded time, which depends on xj . To find this dependence, let the four-position of the
particle be ~ypτq and differentiate s2 “ p~x´ ~yq2,

Bjs
2 “ 2skpδ

k
j ´ u

kBjτq

“ 2psj ´ sku
kBjτq. (7.1)

Because s2 “ 0 for all solutions of the wave equation, the RHS must be zero, thus

Bjτ “
sj
skuk

. (7.2)

With this result we can now evaluate derivatives. For example,

Bju
k “ akBjτ “

aksj
slul

, (7.3)

Bjs
k “ Bjpx

k ´ ykq,

“ δkj ´ u
k sj
slul

, (7.4)

where ak “ duk{dτ is the four-acceleration. Using these relations, we obtain

F jk “
q

4π

„

sjak ´ skaj

pslulq2
´
sla

l ´ 1

pslulq3
psjuk ´ skujq



. (7.5)

Since ~s “ rp1,nq, we see that all terms falls off as r´1 except the term involving ´1, which falls off
as r´2. Far from the source, we can neglect that term, giving for the radiation field

F jk “
q

4π

„

sjak ´ skaj

pslulq2
´

sla
l

pslulq3
psjuk ´ skujq



. (7.6)

The energy momentum tensor can now be found,

T jk “ ´
q2

16π2

p~s ¨ ~uq2a2 ` p~s ¨ ~aq2

p~s ¨ ~uq6
sksk, (7.7)

In order to interpret these results in terms of three-dimensional quantities, the following relations
are useful,

~a “ γ2rγ2pa ¨ v, γ2pa ¨ vqv ` as, (7.8)

a2 “ ´γ6pa ¨ vq2 ´ γ4a2, (7.9)

~s ¨ ~u “ rγp1´ n ¨ vq, (7.10)

~s ¨ ~a “ rγ4pa ¨ vp1´ n ¨ ~vq ´ rγ2pn ¨ aq. (7.11)
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Using these, we find

T jk “
q2

16π2

γ2p1´ n ¨ vq2a2 ` 2γ2pn ¨ aqpa ¨ vqp1´ n ¨ vq ´ pn ¨ aq2

r4γ2p1´ n ¨ vq6
sksk, (7.12)

In the (instantaneous) rest frame of the source, this simplifies to

T jk “
q2

16π2

a2 ´ pn ¨ aq2

r4
sksk, (7.13)

“
q2

16π2

a2 sin2 ϕ

r4
sksk, (7.14)

where ϕ is the angle between the (three-dimensional) acceleration and the direction to the observer.
In this frame, the energy density and flux of the radiation are

U “ T 00 “
q2

16π2

a2 sin2 ϕ

r2
, (7.15)

F “ Un. (7.16)

The power radiated per unit solid angle, in direction ϕ, is therefore

dP

dΩ
“

q2

16π2
a2 sin2 ϕ. (7.17)

Integrating this over solid angle gives the total power radiated by the source,

P “
q2a2

16π2

ż

4π
sin2 ϕdΩ,

“
q2a2

8πr2

ż 1

´1
p1´ x2qdx,

“
q2a2

6π
. (7.18)

These results were first obtained by J. J. Larmor in 1897, using a non-relativistic analysis.

7.2 Relativistic Larmor formula

To find the relativistic equivalent, we use the fact that the emitted power P is Lorentz invariant
for any emitter that emits with front-back symmetry in its instantaneous rest frame. For such an
emitter, the momentum emitted in time dt is zero, therefore under a Lorentz transformation, the
energy dE is proportional to γ, as is dt. Therefore, P “ dE{dt is invariant. The RHS can be
written in a covariant form by noting from (7.8) that in the rest frame, ~a “ p0,aq. Therefore, the
relativistic Larmor formula is

P “ ´
q2a2

6π
. (7.19)
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This can be written in terms of the three-acceleration using (7.9)

P “
q2γ4

6π
rγ2pa ¨ vq2 ` a2s

“
q2γ4

6π
pa2
K ` a

2
‖ ` γ

2v2a2
‖q

“
q2γ4

6π
pa2
K ` γ

2a2
‖q (7.20)

where aK and a‖ are the components of a perpendicular and parallel to v, respectively.

The angular distribution of this power can be found from (7.12),

dP

dΩ
“ r2T 00,

“
q2

16π2

γ2p1´ n ¨ vq2a2 ` 2γ2pn ¨ aqpa ¨ vqp1´ n ¨ vq ´ pn ¨ aq2

γ2p1´ n ¨ vq6
(7.21)

Two special cases are of particular interest. If the acceleration is parallel to the velocity, we have

dP

dΩ
“

q2a2
‖ sin2 θ

16π2p1´ v cos θq6
(7.22)

where θ is the angle between n and v. And, if the acceleration is perpendicular to the velocity we
have

dP

dΩ
“

q2a2
K

16π2p1´ v cos θq4

„

1´
sin2 θ cos2 φ

γ2p1´ cos θq2



, (7.23)

where φ is the angle between a and the projection of n on the plane perpendicular to v.

For highly-relativistic particles, v » 1 and we have 1 ´ v cos θ » p1 ` γ2θ2q{2γ2. The equations
become

dP

dΩ
»

4q2a2
‖γ

12θ2

π2p1` γ2θ2q6
(7.24)

dP

dΩ
»
q2a2

Kγ
8p1´ 2γ2θ2 cos 2φ` γ4θ4q

4π2p1` γ2θ2q6
, (7.25)

7.3 Relativistic invariants

We have seen one example of an invariant: The radiated power is invariant under Lorentz transfor-
mations, provided that the emitted radiation has front-back symmetry in the emitter’s rest frame
(and therefore zero net momentum component in the direction of the velocity). Consider now a
group of N particles (which could be photons) that at any given time have a small spread in position
and momentum. In the centre-of-mass frame, the particles occupy a volume d3x1 “ dx11dx12dx13

and momentum space volume d3p1 “ dp11dp12dp13. In a moving frame, the volume appears smaller,
d3x “ d3x1{γ. The momentum transforms like a four-vector, so under a boost in the x direction,
dp1 “ γpdp11 ` dE1q. However, E1 » mc2 ` p12{p2mc2q so dE1 “ p2p11{mc2qdp11 ! dp11. Therefore,
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d3p “ γd3p1. From this we see that the phase space volume d3xd3p is invariant, and therefore the
phase space density

f “
dN

d3xd3p
(7.26)

is also invariant.

It is not hard to show that the phase space density of photons is related to the specific intensity.
Consider a group of dN photons propagating in the z direction with just a small spread of directions
and frequencies. The energy carried by the photons is

dE “ ~ωdN “ IνdAdtdΩdν

“
Iν

2πcω2
dAdzk2dkdΩ

“
Iν
cω2

d3xd3p (7.27)

Therefore,

f “
Iν
c~ω3

, (7.28)

so Iν{ν
3 is invariant.

The emission coefficient jνpnq is defined as the power emitted per cubic metre, per Hz, per stera-
dian, in direction n. Thus,

jν “
dP

d3xdΩdν

“
2πω2dP

d3xk2dkdΩ

“
2πω2dP

d3xd3p
. (7.29)

If the emitter has front-back symmetry, dP is invariant, and therefore jν{ν
2 is invariant.
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8 Thompson and Compton scattering

An electromagnetic wave impinging on a charged particle, such as an electron, creates an oscillating
motion of the charge. In turn, the oscillating charge generates radiation. This process is known as
scattering. If the motion of the charge is nonrelativistic, the process is called Thompson scattering.
The relativistic case is called Compton scattering.

8.1 Thompson scattering

Consider a linearly-polarized monochromatic plane wave incident on a particle of charge q and mass
m initially at rest. The electric field at the particle has the form

E “ RerEeiωts “ E cospωtq. (8.1)

The resulting Lorentz three-force on the particle is

f “ qpE ` v ˆBq (8.2)

The second term can be neglected since v ăă 1 and B “ E in the wave. Thus, the resulting
three-acceleration is

a “
f

m
“
qE
m

cospωtq. (8.3)

Putting this into Larmor’s formulae (7.17) and (7.18) and taking the time average, we get

dP

dΩ
“

q4E2

32π2m2
sin2 ϕ, (8.4)

P “
q4E2

12πm2
(8.5)

The incident flux of the wave is given by the time average of the Pointing vector S “ EˆB. Since
the electric and magnetic fields are perpendicular, and have equal amplitudes,

F “
1

2
E2 (8.6)

Define the differential cross section for scattering into angle ϕ by

dσ

dΩ
“

dP

FdΩ
. (8.7)

Therefore, for electron scattering we find

dσ

dΩ
“

e4

16π2m2
sin2 ϕ,

“ r2
0 sin2 ϕ, (8.8)

where

r0 “
e2

4πε0mc2
(8.9)
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is the classical electron radius.

Integrating over solid angle gives the total cross section

σ “ σT ”
8π

3
r2

0, (8.10)

which is called the Thompson cross section.

The differential cross section for unpolarized radiation can be found by averaging around the
direction of the incident radiation. Drawing a spherical triangle with vertices corresponding to
the directions of the incident and outgoing waves and the electric field vector, one finds cosϕ “
sin θ cosφ, so

dσ

dΩ
“ r2

0p1´
〈
cos2 φ

〉
sin2 θq,

“ r2
0p1´

1

2
sin2 θq,

“
1

2
r2

0p1` cos2 θq. (8.11)

In the rest frame of the particle, the incident and scattered radiation has the same frequency.
Therefore, the energy of an incident and scattered photon is the same. This is an example of
coherent scattering.

8.2 Compton scattering

Compton scattering occurs when the energy of the incident photon is sufficiently great that sig-
nificant momentum is imparted to the charged particle. As a result, the energy of the photon is
changed by the scattering process. Let ~ki and ~kf be the initial and final four-frequencies of the pho-
ton. Similarly, let ~pi and ~pf be the initial and final four-momenta of the particle. (The subscripts
here are labels, not vector indices). Then conservation of four-momentum requires that

~ki ` ~pi “ ~kf ` ~pf . (8.12)

Chose a frame in which the particle is initially at rest. Then, ~pi “ mp1,0q. The photon momenta
are ~ki “ ωip1,niq and ~kf “ ωf p1,nf q, where ni and nf are the initial and final directions of the
photons (~ “ 1). Then, we have

m2 “ p2
f “ p

~ki ` ~pi ´ ~kf q
2,

“ m2 ` 2~pi ¨ p~ki ´ ~kf q ´ 2~ki ¨ ~kf ,

“ m2 ` 2mpωi ´ ωf q ´ 2ωiωf p1´ ni ¨ nf q. (8.13)

In terms of the wavelength, λ “ 2π{ω, this becomes

λf “ λi ` λcp1´ cosϕq, (8.14)
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where ϕ is the angle between the initial and final photon direction and λc “ 2π{m “ h{mc is the
Compton wavelength. It is the wavelength for which ~ω “ mc2. For an electron, λc „ 0.002426
nm. Photons that have a wavelength much larger than this cannot change appreciably change the
energy of the electron, so the collision corresponds to Thompson scattering. On the other hand,
high-energy photons, with λ ăă λc can accelerate the electron to relativistic velocity.

The cross section for Compton scattering is given by the Klein-Nishina formula, derived using
quantum electrodynamics,

dσ

dΩ
“

1

2
r2

0

ω2
f

ω2
i

ˆ

ωi
ωf
`
ωf
ωi
´ sin2 ϕ

˙

(8.15)

This is smaller than the for Thompson scattering. Scattering is less efficient at high energies.

The total scattering cross section is

σ “ σT
3

4

"

1` x

x3

„

2xp1` xq

1` 2x
´ lnp1` 2xq



`
1

2x
lnp1` 2xq ´

1` 3x

p1` 2xq2

*

, (8.16)

where x “ ωi{m “ λc{λi. This is plotted for a range of x in Figure (8.1).

Figure 8.1: Compton scattering cross section. The figure shows the cross section, in units of the
Thompson cross section, as a function of the dimensionless energy parameter x “ ωi{m “ λc{λi.
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9 Inverse Compton radiation

If relativistic electrons encounter low-energy photons, Compton scattering can transfer energy from
the electrons to the photons, boosting them even to gamma-ray energies. This is called inverse
Compton radiation. In the rest frame of the electron, we have (8.14). Using primes to denote the
electron rest frame, this becomes

ω1f “
ω1i

1` λcω1ip1´ cosϕ1q
(9.1)

Now transform this to the lab frame, in which the electron is moving with velocity v » 1 in the z
direction. Let the initial and final photon directions in this frame be given by pθi, φiq and pθf , φf q.
These are related to the angles in the electron’s rest frame by the aberration formulae, (4.43, 4.44).
In the electron rest frame, the angle ϕ1 between these two directions can be found from spherical
triangles,

cosϕ1 “ cos θ1i cos θ1f ` sin θ1i sin θ1f cospφf ´ φiq (9.2)

(the angle φ is not affected by the boost).

The initial and final photon frequencies are given by the relativistic Doppler formula (4.36). We
see that the maximum energy boost occurs for a head-on collision (ϕ1 “ π). The photon frequency
is boosted by a factor of „ 2γ going from the lab frame to the electron rest frame, and by another
factor of „ 2γ going back into the lab frame, for a total boost of „ 4γ2.

9.1 Isotropic photon distribution

Lets now calculate the power produced by inverse Compton scattering. Let the intensity of incident
photons be Iνpcos θq. In most cases, the electrons are encountering a distribution of photons that
is isotropic, or nearly so. For example, the cosmic microwave background (CMB) photons, so Iν
will be independent of direction.

In the electron rest frame, the scattering process is Thompson scattering. In this frame the incident
radiation is not isotropic because of aberration and the doppler shift. Since Iν{ν

3 is invariant, the
intensity in the rest frame is I 1ν “ Iνpν

1{νq3. The power scattered, in this frame, is given by P 1, but
since Thompson scattering is symmetric, this is the same as the power P in the lab frame. Thus,

P “ P 1 “ σT

ż

4π
dΩ1

ż 8

0
I 1νpcos θ1qdν 1,

“ 2πσT

ż π

0
sin θ1dθ1

ż 8

0

ˆ

ν 1

ν

˙3

ν 1Iνpcos θq
dν 1

ν 1
,

“ 2πσT ν

ż 1

´1
d

ˆ

cos θ ´ v

1´ v cos θ

˙
ż 8

0
γ4p1´ v cos θq4νIν

dν

ν
,

“ 2πσT

ż 1

´1

1´ v2

p1´ v cos θq2
dpcos θq

ż 8

0
γ4p1´ v cos θq4Iνdν,

“ 2πσTγ
2

ż 1

´1
p1´ v cos θq2dpcos θq

ż 8

0
Iνdν. (9.3)
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For an isotropic distribution, Iν does not depend on θ so this becomes

P “ 2πσTγ
2

ż 1

´1
p1´ vxq2dx

ż 8

0
Iνdν,

“ 4πσTγ
2

ˆ

1`
1

3
v2

˙

I,

“ σTγ
2Uγ

ˆ

1`
1

3
v2

˙

, (9.4)

where Uγ is the energy density of the incident photon field. To get the net power radiated, we must
subtract from this the power that is lost from the incident radiation, which is cσtUγ. Therefore,

P “ σTUγ

„

γ2

ˆ

1`
1

3
v2

˙

´ 1



,

“ σTUγ

ˆ

1

3
γ2v2 ` γ2 ´ 1

˙

,

“
4

3
σTγ

2v2Uγ . (9.5)

9.2 Spectrum of the radiation

The spectrum of the radiation can be calculated using quantum field theory. For an isotropic
distribution of photons of frequency ν0 and number density nγ , and an isotropic distribution of
electrons of energy γmc2 and number density ne, the emission coefficient is given by

jνpγ, ν0q “
3π~c

2
σTnenγgpν{4γ

2ν0q, (9.6)

where
gpxq “ 2x2 lnx` x2 ` x´ 2x3, 0 ă x ă 1. (9.7)

This function is shown in Figure 9.1.

Of course we are rarely dealing with electrons having a single energy. More likely, the electrons have
a distribution of energies which, over some range, can be represented by a power law, nepγq “ n0γ

´p,
where n0 and p are constants. In that case, we must integrate over γ to get the total emission. We
may also have a distribution of initial photon frequencies. Let nνpν0q be the number of photons
per unit volume per Hz having frequency ν0. Then the total emission is,

jν “
3~cσT 2p´1pp2 ` 4p` 11q

pp` 3q2pp` 5qpp` 1q
n0ν

´pp´1q{2

ż 8

0
nνpν0qν

pp´1q{2
0 dν0. (9.8)

We see that the spectrum is a power law, jν 9 ν´s with spectral index s “ pp´ 1q{2.
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Figure 9.1: Spectrum of inverse Compton radiation, for an isotropic distribution of photons having
initial frequency ν0 and electrons having energy γmc2.

9.3 The Compton y parameter

Photons passing through a medium containing free electrons repeatedly scatter. This changes the
frequency spectrum of the photons. The fractional change in photon energy is described by the
Compton y parameter,

y “ lnpνf{νiq. (9.9)

For low-energy photons traveling a distance L through a thermal distribution of electrons, one has

y »

$

’

&

’

%

4T

m
τpτ ` 1q, γ ! 1,

ˆ

4T

m

˙2

τpτ ` 1q, γ " 1.
(9.10)

where τ » neσTL is the optical depth.

9.4 Sunyaev-Zel’dovich effect

Inverse-Compton scattering of CMB photons by electrons in the hot intergalactic medium in clusters
of galaxies produces detectable changes in the CMB spectrum. This was predicted by Rachid
Sunyaev and Yakov B. Zel’dovich in 1969. The Sunyaev-Zel’dovich effect was soon observed and
provided a means of detecting distant clusters of galaxies by imaging the CMB radiation to look
for spatially-resolved spectral distortions. The principal effect arises from the thermal velocities of
electrons in the hot gas (several million degrees) found in rich clusters of galaxies. CMB photons
are boosted in energy, resulting in a slight increase in the CBM intensity at shorter wavelengths
and a decrease at longer wavelengths. The effect is independent of the distance to the cluster.
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10 Radiative transfer

As radiation propagates through a medium, its intensity may be reduce due to absorption or scat-
tering of photons, or increased by emission from the medium. Emission of radiation is characterized
by the emission coefficient jνpn, which is the power emitted per Hz per steradian in the direction
n. For isotropic emission, one also defines the emissivity εν , which is the total power emitted per
unit frequency per unit mass. Thus,

jν “
ενρ

4π
(10.1)

where ρ is the mass density of the medium.

As the radiation propagates, the decrease in intensity, per unit distance s, must be proportional to
the intensity. The proportionality constant is called the absorption coefficient αpνq.

Combining these two processes we obtain the equation of radiative transfer

dIν
ds

“ ´αpνqIν ` jν . (10.2)

10.1 Optical depth

To better understand this equation, consider the case of absorption only, jν “ 0. Then

dIν
ds

“ ´αpνqIν , (10.3)

which has the solution
Iνpsq “ Iνp0qe

´τpsq, (10.4)

where

τpsq “

ż s

0
αpν, xqdx (10.5)

is called the optical depth. We see that if the optical depth is zero, there is no absorption. In
the presence of absoprtion the optical depth increases along the propagation path. By the time
that it reaches unity, a fraction 1{e of the radiation has been absorbed. The medium is said to be
optically-thick if τ " 1 and optically-thin if τ ! 1.

In the case of emission only, we have the solution

Iνp0q “ Iνpsq `

ż s

0
jνpxqdx, (10.6)

which shows how the emission contributes to the intensity.
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10.2 Source function

From the definition (10.5) we see that dτ “ αpsqds, so (10.2) can be written as

dIν
dτ

“ Sν ´ Iν , (10.7)

where

Sν “
Iν
αpνq

(10.8)

is called the source function.

The general solution of this equation can be found by multiplying both sides by the integrating
factor eτ ,

eτ
dIν
dτ

“
d

dτ
peτIνq ´ Iνe

τ “ Sνe
τ ´ Iνe

τ , (10.9)

therefore,

Iν “ Iνp0qe
´τ ` e´τ

ż τ

0
Sνpxqe

xdx (10.10)

If the source function is constant along the propagation path, this reduces to

Iν “ Iνp0qe
´τ ` Sνp1´ e

´τ q (10.11)

which shows that if the medium is optically-thick at frequency ν, Iν » Sν .

10.3 Mean free path

The equation of radiative transfer tells us that the probability that a photon will travel at least
to an optical depth τ is e´τ . Therefore, the mean optical depth reached by a photon before being
absorbed is

〈τ〉 “
ż 8

0
τe´τdτ “ 1. (10.12)

If the absorption coefficient is constant, the mean distance travelled by the photon before absorption
will be

l “ 〈s〉 “ 〈τ{α〉 “ 1{α. (10.13)

This distance is called the mean free path.
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11 Black body radiation

Black body radiation refers to a radiation field that is in thermal equilibrium with matter. An
example is the interior of a box, or cavity, which is held at a uniform temperature T. Oscillations of
electrons in the walls generate electromagnetic radiation that propagates in the interior of the box.
Conversely, radiation is absorbed by interaction with the walls. If a small hole is made in the side of
the box, black-body radiation leaks out from the interior. This radiation has a universal spectrum
Iν “ Bν called the Planck function, which depends only on the temperature. To see this imagine
two sources of black body radiation, at the same temperature, placed adjacent to one another with
the holes aligned, and separated only by a filter that passes a narrow range of frequencies around
ν. If the spectra emitted by each were not identical, energy would flow from one to the other, in
violation of the second law of thermodynamics.

A body that is perfectly absorbing, and has a uniform temperature T , must emit exactly the same
power, per unit surface area, with a Planck spectrum. To see this, imagine that the body is placed
inside a box filled with block body radiation. In equilibrium, every element of the surface of the
body must emit as much radiation as it absorbs. Since it is a perfect absorber, the emitted flux is
the same as the flux of black body radiation within the cavity, at all frequencies.

11.1 Kirchoff’s law

Using the same argument as for a solid absorber, we could fill the black-body cavity with some
medium that both absorbs and emits radiation and allow it to come to thermal equilibrium. The
radiation in the cavity is homogeneous and isotropic and has the Planck spectrum. Therefore
dIν{ds “ 0 and from the equation of radiative transfer we have

Bν “ Sν “
Jν
α
. (11.1)

Thus, the source function of a thermal emitter is the Planck function and there is an connection
between emission and absorption,

jν “ αBν . (11.2)

11.2 Density of states

To find the Planck function, we imagine radiation filling a cube having sides of length L, and impose
periodic boundary conditions. The components of the wave vector k must satisfy

kαL

2π
“ nα (11.3)

where nα “ 1, 2, ¨ ¨ ¨ . Each integer value corresponds to a different quantum state, and corresponds
to a point in k-space. Each point occupies a volume p2π{Lq3 in k-space, so the total number of
states contained within a volume d3k “ k2dkdΩ is pL{2πq3k2dkdΩ.
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We must multiply this by the number of spin states g that the particle can have. For a photon
there are two, corresponding to RH and LH circular polarization so g “ 2. Thus, the number of
states per unit volume is

dn “ p2πq´3gk2dkdΩ,

“ p2πq´3gω2dωdΩ. (11.4)

11.3 Occupation number

Photons obey Bose-Einstein statistics. There is no limit to the number of photons that can occupy
a given quantum state. Suppose that there are j photons in a state of frequency ω. Then the
energy of these photons will be E “ j~ω “ jω. According to the fundamental law of statistical
mechanics, the probability that a system in equilibrium at temperature T will have energy E is
e´E{kBT , where kB is Boltzmann’s constant (1.38ˆ 10´23 J K´1, hereafter taken to be unity by a
redefinition of the unit of temperature). Therefore, the mean number of photons will be

N “
1

Z

8
ÿ

j“0

je´jx,

“ ´
1

Z

dZ

dx
(11.5)

where

Z “
8
ÿ

j“0

e´jx, (11.6)

is the partition function and x “ ω{T .

Since
8
ÿ

j“0

zj “
1

1´ z
, (11.7)

we have

Zpxq “
1

1´ e´x
, (11.8)

therefore

N “
e´x

1´ e´x
“

1

ex ´ 1
. (11.9)

11.4 Planck function

To find the energy in each state, we multiply the number of photons in that state by the corre-
sponding frequency ω, so the energy per unit volume, with frequency in the range pω, ω ` dωq
traveling within solid angle dΩ is

IωdωdΩ “ p2πq´3pgω2dωdΩq
ω

ex ´ 1
. (11.10)
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Recalling that g “ 2 for photons we get the intensity

Iω “ Bω “
ω3

4π3

1

eω{T ´ 1
, (11.11)

Iν “ Bν “
4πν3

e2πν{T ´ 1
. (11.12)

which in SI units is

Bν “
2hν3

c2pehν{kBT ´ 1q
. (11.13)

11.5 Energy and number density

The specific energy density can be found immediately,

Uω “ 4πBω “
ω3

π2peω{T ´ 1q
. (11.14)

The specific number density is

nω “
Uω
ω
“ 4πBω “

ω2

π2peω{T ´ 1q
. (11.15)

To obtain the energy density we must integrate over frequency,

U “
1

π2

ż 8

0

ω3dω

eω{T ´ 1
,

“
T 4

π2

ż 8

0

x3dx

ex ´ 1
. (11.16)

The integral has the value 6ζp4q “ π4{15, where ζpxq is the Riemann zeta function, defined by

ζpxq “ 1` 2´x ` 3´x ` ¨ ¨ ¨ “
1

Γpxq

ż 8

0

tx´1

et ´ 1
dt, px ą 1q. (11.17)

Thus, the energy density is

U “
π2

15
T 4 “ aT 4. (11.18)

where the radiation constant a has the value in SI units

a “
8π5k3

15h3c3
“ 7.5657ˆ 10´16 J m´3 K´4. (11.19)

The number density is found in a similar manner,

n “
T 3

π2

ż 8

0

x3dx

ex ´ 1
,

“
2ζp3q

π2
T 3. (11.20)
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The flux is given by

F “ πI “
U

4
“ σBT

4 (11.21)

where

σB “
2π5k3

B

15h3c2
“ 5.6704ˆ 10´8 J m´2 s´1 K´4 (11.22)

is the Stefan-Boltzman constant.

11.6 Fermions

Some relativistic particles, such as neutrinos, are fermions. These particles obey Fermi-Dirac
statistics, and at most one particle can occupy a given quantum state. In that case, the partition
function is

Z “
1
ÿ

j“0

e´x “ 1` e´x, (11.23)

so the occupation number is

n “
e´x

1` e´x
“

1

ex ` 1
. (11.24)

which differs from that of bosons by an important sign. The specific energy and number densities
are therefore

Uω “
gFω

3

2π2peω{T ` 1q
, (11.25)

nω “
Uω
ω
“ 4πBω “

gFω
2

2π2peω{T ` 1q
. (11.26)

Integration gives the total densities, which we denote with an F for fermion, as opposed to B for
boson.

UF “
7π2

240
T 4 “

7

8

gF
gB
UB, (11.27)

nF “
3ζp3qgF

4π2
T 3 “

3

4

gF
gB
nB. (11.28)
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12 Bremsstrahlung

Bremsstrahlung refers to radiation that is produce when a moving charge is accelerated by the
coulomb field of another charge. Most commonly this occurs in an astrophysical plasma when
electrons are deflected as they pass near to ions. Electrons dominate the emission because their
lower mass results in greater acceleration. Bremsstrahlung is also called free-free emission, as the
electron is not in a bound state.

A complete analysis requires quantum electrodynamics. However, the basic results can be obtained
from a classical analysis, to which are added corrections from the quantum theory.

12.1 Single non-relativistic electron

Consider an electron encountering an ion (Figure 12.1). Classically, the Coulomb attraction results
in a deflection of the electron, which results in radiation. Ions are several thousand times more
massive than an electron, so the ion can be considered as fixed. The deflection of the electron is
generally very small so the path can be approximated by a straight line (for an exact approach, see
Landau and Lifshitz, The Classical Theory of Fields).

Figure 12.1: Geometry of electron-ion encounter.

Let the charge of the ion be Ze and let r be the vector connecting the ion to the electron. The
acceleration of the electron is given by

a “ ´
Ze2

4πmr3
r “ ´

Zr0

r3
r (12.1)

Therefore,

a2 “
Z2r2

0

pb2 ` v2t2q2
. (12.2)

Putting this into Larmor’s formula (7.18) we get the total power radiated as a function of time,

P ptq “
e2a2

6π
“

ασTZ
2

4πpb2 ` v2t2q2
., (12.3)

where α “ e2{4π » 1{137 is the fine structure constant.

The total energy radiated is

W “

ż 8

´8

Pdt “
ασTZ

2

4π

ż 8

´8

dt

pb2 ` v2t2q2
,

“
ασTZ

2

4vb3
. (12.4)
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12.2 Spectrum of the radiation

The spectrum of the emitted power is related to the Fourier transform of the acceleration of the
electron, which we define by

ãpωq “

ż 8

´8

aptqe´iωtdt, (12.5)

aptq “
1

2π

ż 8

´8

ãpωqeiωtdω, (12.6)

Using (12.3), we can write the radiated energy as

W “

ż 8

´8

P ptqdt “
e2

6π

ż 8

´8

a2ptqdt. (12.7)

By Parseval’s theorem, this can be written as an integral over frequency,

W “
e2

12π2

ż 8

´8

|ãpωq|2dω. (12.8)

Since aptq is real, ãpωq is Hermetian (its real part is symmetric and its imaginary part is antisym-
metric). Thus

W “
e2

6π2

ż 8

0
|ãpωq|2dω. (12.9)

From this we see that the energy emitted per unit angular frequency is given by

Wω ”
dW

dω
“

e2

6π2
|ãpωq|2. (12.10)

Evaluating the Fourier transform, we get

ãpωq “ Zr0

ż 8

´8

e´iωtdt

b2 ` v2t2
,

“
Zr0

vb

ż 8

´8

e´ipωb{vqxdx

1` x2
,

“
πZr0

vb
e´|ωb{v|. (12.11)

Thus,

Wω “
ασTZ

2

4v2b2
e´2ωb{v. (12.12)

We see that the spectrum of the emitted power is essentially constant when ω ! v{b.
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12.3 Emission from many electrons

Now suppose that we have many electrons and ions, with number densities ne and ni respectively,
with the electrons all having the same speed v. The number of collisions per unit volume, per unit
time, with impact parameter in the range pb, b` dbq is

dN

dV dt
“ neniv ¨ 2πbdb. (12.13)

Therefore, the energy emitted per unit frequency, per unit volume, is

dW

dV dωdt
“

π

2v
ασTZ

2nine

ż bmax

bmin

e´2ωb{v

b
db, (12.14)

where bmin and bmax are minimum and maximum impact parameters. As a good approximation we
can take bmax “ 8, however as bmin Ñ 0 the power diverges logarithmically. A reasonable lower
limit is the distance at which quantum effects become important. From the Heisenberg uncertainty
principle, ∆p∆x „ π. Taking ∆x “ bmin and ∆p “ mv gives bmin „ π{mv. Inserting this into
(12.12) we get

dW

dV dωdt
“
πασT

2v
Z2nineE1pxq, ,

where E1pxq is an exponential integral and x “ 2πω{mv2.

The exact result, from quantum electrodynamics, is quite similar,

dW

dV dωdt
“

2ασT
?

3 v
Z2ninegff pv, ωq, (12.15)

where gff is a slowly-varying function of v and ω called the Gaunt factor.

12.4 Thermal bremsstrahlung

Finally, we now allow a range of electron velocities. In astrophysics settings, the electrons typically
have a thermal velocity distribution, given by the Maxwell-Boltzmann distribution. The probability
the electron has a velocity v, within d3v is

fpvqd3v “
´ m

2πT

¯3{2
e´mv

2{2Td3v (12.16)

(The normalization constant comes from the condition that the integral of P pvq over the entire
three-velocity space must be unity.) Therefore,

fpvqdv “
´ m

2πT

¯3{2
4πv2 expp´mv2{2kqdv. (12.17)

Averaging the velocity over this distribution,

dW

dV dωdt
“

8πασT
?

3

´ m

2πT

¯3{2
Z2nine

ż 8

vmin

gffe
´mv2{2T vdv. (12.18)
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where vmin “
a

2ω{m is the minimum velocity of an electron that has at least energy ω. Setting
x “

a

mv2{2T this can be written as

dW

dV dωdt
“

4mασT

p6πmT q1{2
Z2nine ḡffe

´ω{T , (12.19)

where

ḡff “

ż 8

xmin

gff pxqe
´xxdx

N
ż 8

xmin

e´xxdx (12.20)

is the Gaunt factor averaged over the velocity distribution. Its value may be approximated by the
following equation, in SI units,

ḡff pT, νq “ 14.18` 1.91 logpT q ´ 1.27 logpνq. (12.21)

If we assume isotropic emission and divide (12.19) by 4π steradians, we get the emission coefficient

jν “
dW

dV dνdtdΩ
“

2π

4π

dW

dV dωdt
,

“ 2ασT

´ m

6πT

¯1{2
Z2nineḡffe

´2πν{T

“ 5.4ˆ 10´40 T´1{2Z2neniḡffe
´hν{kT , (12.22)

where the last line assumes SI units.

The total power emitted per unit volume is

εff “ 4π

ż 8

0
jνdν,

“ 8πασT

´ m

6πT

¯1{2
ż 8

0
ḡffe

´2πν{Tdν

“ 4ασT

ˆ

mT

6π

˙1{2

Z2nineḡB (12.23)

“ 1.4ˆ 10´28T 1{2Z2neniḡBpT q, (12.24)

where ḡB is ḡff averaged over frequency. It is typically in the range 1.1 to 1.5, with values near
1.2 being typical.

12.5 Free-free absorption

Radiation can also be absorbed by an electron moving in the electric field of an ion, with a cor-
responding increase in the energy of the electron. This is called free-free absorption. For ther-
mal bremsstrahlung, the emission and absorption coefficients are related by Kirchhoffs law (11.2).
Therefore the absorption coefficient is,

αff “
jν
Bν

“

˜

eω{T ´ 1

4πν3

¸

2ασT

´ m

6πT

¯1{2
Z2nineḡffe

´ω{T ,

“
ασT
2π

´ m

6πT

¯1{2
Z2nineḡffν

´3p1´ e´hν{kT q, (12.25)

In the Rayleigh-Jeans (low frequency) limit, αff 9 ν´2, so free-free absorption cuts of the spectrum
at low frequencies.
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13 Synchrotron radiation

Synchrotron radiation is emitted whenever relativistic electrons move in a magnetic field. It differs
from cyclotron radiation in which the electrons are non-relativistic. In astrophysical situations,
such as radio galaxies and jets, the electrons are almost always relativistic.

The motion of an electron in a magnetic field B is determined by the relativistic equation of motion

d~p

dτ
“ qF ¨ ~u. (13.1)

Recall that ~p “ mγp1,vq and ~u “ γp1,vq. Also, we assume that E “ 0. The 0 component of (13.1)
gives

m
dγ

dτ
“ ´qE ¨ v “ 0, (13.2)

which shows that γ is constant during the motion.

The spatial component of (13.1) is therefore

m
dv

dτ
“ qv ˆB (13.3)

which shows that the acceleration is perpendicular to the velocity. Resolving the velocity into
components parallel and and perpendicular to B, v “ v‖` vK and recalling that dt “ γdτ we find

dv‖

dt
“ 0,

dvK
dt

“
q

γm
vK ˆB. (13.4)

The solution corresponds to helical motion, with electrons spiraling around the field lines with
orbital frequency

ωB “
qB

γmc
. (13.5)

The acceleration is aK “ ωBvK and q “ ´e, so from the relativistic Larmor formula (7.20), the
emitted power is

P “
e2

6π
γ4ω2

Bv
2
K,

“
e4

6πm2
γ2B2v2 sin2 α,

“
8π

3
r2

0γ
2v2B2 sin2 α,

“ σTγ
2v2B2 sin2 α, (13.6)

where α is the pitch angle, the angle between v and B.
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If the velocity distribution of the electrons is isotropic, we can average over the pitch angle to obtain〈
sin2 α

〉
“ 2{3, thus

P “
2

3
σTγ

2v2B2,

“
4

3
σTγ

2v2UB, (13.7)

where UB “ B2{2 is the energy density of the magnetic field. Compare this with the corresponding
result for inverse Compton radiation (9.5).

13.1 Spectrum of the radiation

For a single electron, the spectrum of the emitted radiation, in the lab frame, has the form (see
Rybiki and Lightman)

Pω “

?
3

8π2

e3B sinα

m
F pω{ωcq, (13.8)

where ωc “ 2πγ3ωB sinα is a characteristic frequency and the dimensionless function F is given by

F pxq “ x

ż 8

x
K5{3pξqdξ, (13.9)

where K5{3 is the modified Bessel function of order 5/3.

However, in astrophysics we almost always are dealing with an ensemble of electrons having a
range of energies. Quite often, the energy distribution follows a power law, over some range of
energies. As we did for inverse-Compton radiation, we write nepγq “ n0γ

´p and integrate over the
distribution. This gives the emission coefficient,

jν “
Pω
4π
“
Pω
2
,

“

?
3

8π2

n0e
3B sinα

mpp` 1q
Γ

ˆ

p

4
`

19

2

˙

Γ

ˆ

p

4
´

1

12

˙ˆ

2πmν

3eB sinα

˙p1´pq{2

, (13.10)

where Γ is the gamma function. As for inverse Compton radiation, we see that the spectrum is a
power law jν 9 ν´s with spectral index s “ pp´ 1q{2.

13.2 Polarization

Because the acceleration of the electron is perpendicular to the magnetic field, and the magnetic
field generally has a coherent structure over large scales, synchrotron radiation is polarized. The
net polarization is linear and aligned with the magnetic field. Let Pω‖ and PωK be the spectral
power emitted by electrons with a single energy γm. with polarization parallel and perpendicular
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to the projection of the magnetic field on the plane of the sky (ie. the plane perpendicular to the
line of sight). It can be shown (see Rybicki and Lightman) that

Pω‖ “

?
3

16π2

e3B sinα

m
rF pω{ωcq ´Gpω{ωcqs , (13.11)

PωK “

?
3

16π2

e3B sinα

m
rF pω{ωcq `Gpω{ωcqs , (13.12)

where F pxq is given by (13.9) and
Gpxq “ xK2{3pxq. (13.13)

The degree of linear polarization is given by

P “
PωK ´ Pω‖

PωK ` Pω‖
“
Gpω{ωcq

F pω{ωcq
. (13.14)

For a power-law distribution of energies, the polarization can be found by integrating over γ. Since
ω{ωc9γ

´2,

P “

ż 8

0
Gpω{ωcqγ

´pdγ
M

ż 8

0
F pω{ωcqγ

´pdγ,

“

ż 8

0
Gpxqxpp´3q{2dx

M

ż 8

0
F pxqxpp´3q{2dx,

“
p` 1

p` 7{3
. (13.15)

The degree of polarization of synchrotron radiation is often quite high, sometimes exceeding 50%.

13.3 Self absorption

Electrons orbiting in a magnetic field can also absorb photons. For a power-law distribution of
electron energies, the absorption coefficient is given by (Rybicki and Lightman),

αpνq »

?
3e3n0B sinα

32π2m

ˆ

3eB sinα

2πm3

˙p{2

Γ

ˆ

3p` 2

12

˙

Γ

ˆ

3p` 22

12

˙

ν´pp`4q{2, (13.16)

which increases rapidly as frequency decreases. Comparing this to the emission coefficient (13.10),
we see that the source function

Sν “
jν
α
9 ν5{2. (13.17)

Recall that when the medium is optically-thick, Iν “ Sν . Thus, at low frequencies the spectrum
increases with frequency as a power law with slope 5{2. At some frequency the medium become
optically thin and the spectrum turns over to become a power law with slope ´s. The 5{2 slope at
low frequencies is a distinguishing feature of synchrotron radiation.
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14 Radiative transitions

Emission and absorption lines arise from transitions between quantum states in atoms or molecules.
Atomic lines arise from transitions of an electron between two bound states of different energy.
Molecular lines arise from transitions between vibrational or rotational states, resulting in a change
of vibrational or rotational energy.

A photon can trigger a transition from a lower to higher energy level if the difference in energy
E21 “ E2 ´ E1 is sufficiently close to the photon energy ω. A spontaneous downward transition
can occur, with the emission of a photon of energy ω » E21. Also, stimulated transitions can occur
if the atom or molecule is illuminated by radiation of the appropriate energy. In that case, the
emitted photon is identical to the illuminating photon, having the same wavelength, direction, and
phase.

As a result of this, radiation passing through gas is absorbed at specific wavelengths, giving rise
to absorption lines. These are common in stellar spectra, due to absorption of light from the
photosphere as it passes through the stellar atmosphere. Also, gas emits radiation at specific
wavelengths. These result in emission lines, as are commonly seen in the spectra of planetary
nebula and HII regions.

Hyperfine transitions involve the magnetic interaction between electron spin and nuclear spin. The
best known is the 21-cm line of neutral hydrogen, in which transitions occur between states in
which the electron and proton spins are parallel (higher energy) or anti-parallel (lower energy).

Quantum-mechanical selection rules govern the transitions that are allowed between different levels.
The strongest lines are generally due to electric-dipole transitions, which involve a change in the
electric dipole moment of the atom. For a single-electron, the selection rules for electric dipole
transitions are

∆l “ ˘1, (14.1)

∆m “ 0,˘1. (14.2)

where l and m are the orbital and magnetic quantum numbers. For multi-electron atoms we also
have the total orbital and spin angular momentum quantum numbers L and S. and the total angular
momentum quantum number J . If the total spin angular momentum of the nucleus is included, we
have the quantum number F , which is the total angular momentum J of the electronic configuration
plus the spin angular momentum of the nucleus.

For all transitions, J (or F ) can change only by 0 or ˘1. The exception is J “ 0 to J “ 0 which is
not allowed since the photon caries one unit of angular momentum. The selection rules of electric
dipole transitions are

∆S “ 0, (14.3)

∆L “ 0,˘1, (14.4)

∆J “ 0,˘1, (except J “ 0 to J “ 0) (14.5)

For higher-order transitions, parity is conserved, and for magnetic dipole transitions (eg. hyperfine
transitions) the electronic configuration does not change.
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14.1 Einstein coefficients

In a semi-classical analysis of black body radiation, Einstein (1916) introduced the coefficients
B12, B21 and A21 to describe radiative excitation and de-excitation. The coefficient B12 is the
probability per unit time that the radiation having energy density Uωpωq will cause a transition
1 Ñ 2 with the absorption of a photon of energy ω “ E21. Similarly, B21 is the probability per unit
time that the radiation having energy density Uωpωq will cause a transition 2 Ñ 1 with emission of
a photon of energy ω. The coefficient A21 is the probability per unit time that a system in state 2
will spontaneously decay to state 1, emitting a photon.

Thus, if there are n1 atoms per unit volume in state 1, the rate of absorption, per unit volume, is
UωB12n1. Similarly, the rate of emission from state 2 is pUωB21n2 `A21qn2.

In a two-level atom (where there are no transitions involving other states), the following rate
equations must therefore hold,

dn1

dt
“ Uωp´B12n1 `B21n2q `A21n2, (14.6)

dn2

dt
“ UωpB12n1 ´B21n2q ´A21n2, (14.7)

The Einstein coefficients are related, as can be seen as follows. Place a two-level atom inside a
black body cavity at temperature T and let it come to equilibrium. Then, the number of photons
emitted per unit time must equal the number absorbed. Thus,

UωpB21n2 ´B12n1q `A21n2 “ 0. (14.8)

In thermal equilibrium, the ratio of populations is given by the Boltzmann Equation

n2

n1
“
g2

g1
e´E21{T “

g2

g1
e´ω{T , (14.9)

which follows directly from the fundamental law of statistical mechanics. Here the statistical weight
gk is the number of quantum states that have the same energy Ek.

Also, the energy density is given by the Planck function (11.14),

Uω “
ω3

π2peω{T ´ 1q
. (14.10)

Combining these equations, we obtain

ω3

π2peω{T ´ 1q
“

A21{B21

pg1B12{g2B21qeω{T ´ 1
, (14.11)

which can only be true if

B21 “
g1

g2
B12, (14.12)

A21 “
ω3

π2
B21. (14.13)

Note: several different definitions of the Einstein B coefficients are in use. Some define the transition
probability per unit time as B12Uν , others as B12Jν . The relationship between A21 and B21 will
depend on which definition is used.
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14.2 Oscillator strengths

In astronomical spectroscopy one often encounters oscillator strengths which are dimensionless
numbers proportional to the probability of the transition. The absorption oscillator strength f12 is
calculated using quantum mechanics and is related to the Einstein coefficients by

B12 “
2π2r0

ω
f12, (14.14)

B21 “
2π2r0g1

ωg2
f12, (14.15)

A21 “
2r0ω

2g1

g2
f12. (14.16)

14.3 Line profiles

Emission and absorption lines have a finite width, due to a number of factors. natural broadening
occurs as a result of the Heisenberg uncertainty principle. The probability that an atom in the
upper state will decays to a lower state in time t is

fptq “ e´Γt, (14.17)

where the spontaneous decay rate, also called the damping constant, Γ is the sum of the Einstein
A coefficients over all possible transitions to states of lower energy,

Γ “
ÿ

k

Ajk, Ek ă Ej . (14.18)

Therefore, the average lifetime in the upper state is t̄ “ 1{Γ. Because of this the uncertainty in the
energy is ∆E “ π{t̄, so the line width is ∆ω » πΓ.

The line profile can be obtained classically, by imagining the electric field to arise from a damped
oscillator which decays according to

E 9 e´
1
2

Γt (14.19)

This gives the Lorentz line profile

fpωq 9

ż 8

0
e´

1
2

Γte´iωtdt,

“
Γ

2πrω2 ` pΓ{2q2s
. (14.20)

The normalization constant was chosen so that
ż 8

´8

fpωqdω “ 1. (14.21)
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Convolving the Lorentz profile with the un-broadened line, represented by a delta function at
frequency ω0, we obtain the line profile

ϕω “
Γ{2π

pω ´ ω0q
2 ` pΓ{2q2

, (14.22)

which has the normalization
ż 8

´8

ϕωdω “ 1. (14.23)

Several other physical process contribute to line broadening. Pressure broadening occurs due to
collisions between atoms. Collisions can cause de-excitation of electrons, which give up their excess
energy in the collision instead of emitting a photon. This reduces the effective lifetime of the excited
state, increasing the linewidth. As a result, we see a Lorentzian profile whose width increases with
pressure.

Another common effect is Doppler broadening. Typically, atoms have a thermal distribution of
velocities, so the component of velocity along the line of sight (the z axis say) has the distribution
function

fpvzq “

c

m

2πT
e´mv

2{2T . (14.24)

The Doppler effect produces a frequency shift

δω “ ω0vz, (14.25)

so the distribution function of δω is

fpδωq “

ˇ

ˇ

ˇ

ˇ

dvz
dpδωq

ˇ

ˇ

ˇ

ˇ

fpvzq “
1

?
π∆ωD

e´pδωq
2{∆ω2

D . (14.26)

where the Doppler width is defined as

∆ωD “ ω0

a

2T {m. (14.27)

This gives the Gaussian line profile

ϕω “
1

?
π∆ωD

e´pω´ω0q
2{∆ω2

D . (14.28)

Often, spectral lines are broadened by a combination of these effects, and can be represented by a
Voigt profile, which is a convolution of Gaussian and Lorentz profiles.

ϕω “
1

?
π∆ωD

V pT {4∆ωD, pω ´ ω0q{∆ωDq (14.29)

where

V pa, uq “
a

π

ż 8

´8

e´y
2
dy

a2 ` pu´ yq2
. (14.30)
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14.4 Relation to emission and absorption coefficients

It is conventional to combine stimulated emission with absorption, since both depend on the energy
density of the radiation. Emission is then is then included with absorption as contributing with a
minus sign (ie. a negative absorption coefficient). Thus, the emission coefficient depends only on
the spontaneous emission. The power emitted per steradian per unit frequency per unit volume is

jωpωq “
~ω
4π
n2A21ϕω, (14.31)

jνpνq “
~ν
2
n2A21ϕν , (14.32)

(14.33)

The power absorbed from a beam per steradian per Hz per unit area per unit distance is

αpωqJω “
ω

4π
pn1B12 ´ n2B21qϕωUω, (14.34)

so the absorption coefficient is

αpωq “ ~ωpn1B12 ´ n2B21qϕω, (14.35)

αpνq “ ~νpn1B12 ´ n2B21qϕν . (14.36)

14.5 Masers

If the matter is in thermal equilibrium with itself (but not necessarily with the radiation), the
Boltzmann equation tells us that

n2B21

n1B12
“
n2g1

n1g2
“ e´ω{T , (14.37)

so
αpωq “ ωϕωpn1B12p1´ e

ω{T q. (14.38)

Clearly, the first term dominates, so the absorption coefficient is positive.

If, however,
n2

n1
‰
g2

g1
“ e´ω{T , (14.39)

the system is said to be producing non-thermal radiation. If n2g1 ą n1g2 we call this a popu-
lation inversion. The absorption coefficient can then become negative and stimulated emission
dominates absorption. The intensity then increases exponentially as the beam propagates. Such a
system is called a maser (microwave amplification by stimulated emission of radiation), or a laser.
Astrophysical masers have been observed in massive interstellar clouds.
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15 Absorption and scattering

In a scattering process, photons are redirected. If the frequency is not changed we call it coherent
scattering. In the following we assume isotropic scattering, for which there is no preferred scattering
direction. In addition to a term describing the decrease in intensity due to scattering, we also need
a term describing an increase in intensity due to scattering of other photons into the beam. This
latter term is proportional to the mean intensity.

The transfer equation becomes

dIν
ds

“ ´pα` σqIν ` σJν ` jν . (15.1)

where σ is the scattering coefficient. For a thermal emitter, jν “ αBν , so we have

dIν
ds

“ αpBν ´ Iνq ` σpJν ´ Iνq. (15.2)

We can write this in a simpler form by redefining the source function

Sν “
αBν ` σJν
α` σ

. (15.3)

This gives
dIν
ds

“ pα` σqpSν ´ Iνq. (15.4)

The sum of absorption and scattering coefficients α ` σ is called the extinction coefficient. When
scattering is included, the mean free path becomes

l “
1

α` σ
(15.5)

Note that in free space (jν » 0) the source function is generally less than the Planck function,
Sν “ αBν{pα` σq. Lets write the source function in the form ?

Sν “ εBν ` p1´ εqJν . (15.6)

where
ε “

α

α` σ
(15.7)

is the probability that an encounter will result in absorption The quantity 1 ´ ε is called the
single-scattering albedo.

The typical number of scatterings that will occur before absorption will be N “ 1{ε , so the typical
distance traveled by a photon before absorption will be

l˚ “
?
Nl “

l
?
ε
. (15.8)

which is called the effective mean free path.

The effective optical thickness, for a distance L, is

τ˚ “
L

l˚
(15.9)

(recall that τ “ αL “ L{l˚ if α is constant).
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15.1 Rayleigh scattering

Classically, an atom or molecule that has a dipole moment can be thought of as a harmonic
oscillator, with some natural frequency ω0. Radiation of frequency ω incident on the atom interacts
with the dipole moment, exciting the oscillator (imagine an electron attached by a spring to an
atom). The oscillating dipole moment radiates at the same frequency as the incident radiation.
This corresponds to a form of coherent scattering, first investigated by Lord Rayleigh.

The equation for the time evolution of the dipole moment under excitation by incident radiation is
that of a driven harmonic oscillator,

:d` ω2
0d “

e2E
m

cospωtq. (15.10)

Writing dptq “ exptq “ ex0cosωt, this becomes

p´ω2 ` ω2
0qx0 “

eE
m
. (15.11)

Therefore the oscillation amplitude is

x0 “
e2E
4πm

1

ω2
0 ´ ω

2
, (15.12)

and the acceleration is

a “
e2E
4πm

ω2

ω2
0 ´ ω

2
. (15.13)

Apart from the factor of pω2{pω2
0 ´ ω2q, this is the same as for Thompson scattering, Therefore,

the scattering cross-section is the same as for Thompson scattering multiplied by the square of this
factor,

dσR
dΩ

“ r2
0

ω4

pω2
0 ´ ω

2q2
sin2 ϕ. (15.14)

σR “ σT
ω4

pω2
0 ´ ω

2q2
. (15.15)

(15.16)

As for Thompson scattering, the scattered light is strongly polarized. If the incident radiation is
unpolarized,

dσR
dΩ

“
1

2
r2

0

ω4

pω2
0 ´ ω

2q2
p1` cos2 θq. (15.17)

We can now generalize this to a medium containing n scattering electrons per unit volume. The
scattering coefficient, per unit volume, is

kR “ neσR “
neσTω

4

pω2
0 ´ ω

2q2
. (15.18)
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In the low-frequency limit this reduces to Rayleigh’s scattering formula

kR “ neσR “
neσTλ

4
0

λ4
. (15.19)

and in the high-frequency limit, it reduces to Thompson’s formula

kT “ neσT . (15.20)

Rayleigh scattering is the main reason that the sky is blue and sunsets are red.

15.2 Mie scattering

Light is also scattered by small solid or dielectric particles, called dust grains or aerosols. This is
called Mie scattering. The scattering cross-section can be found by solving Maxwell’s equations for
a dielectric sphere illuminated by an incident plane wave. The result depends on the size of the
particle, compared to the wavelength and its dielectric constant.

Consider the case of dielectric spheres of radius R and index of refraction n. Define

x “ 2πR{λ (15.21)

and the scattering efficiency factor Qs “ σs{σg, where σs is the scattering cross-section and σg is
the geometrical cross-section of the particle. Then

Qs “

$

’

&

’

%

» 0 when x ! 1,

» 3 when x » 1,

2 when x " 1.

(15.22)

The last case is a consequence of Babinet’s principle.

Mie scattering is the dominant process responsible for extinction by dust grains in the interstellar
medium. These grains typically have sizes of a few microns, so at optical wavelengths the scattering
efficiency decreases with increasing wavelength. Thus red light suffers less exctinction than blue
which leads to reddening of the spectrum. A useful approximation is that

EB´V » 3AV (15.23)

where the reddening EB´V “ pB´V q´ pB´V q0 is the difference between the B´V colour index
that is observed and the value with no extinction. AV is the extinction in magnitudes in the V
band. In this way it is possible to estimate the extinction, from the amount of reddening of the
spectrum. The latter can be deduced by comparing the spectral energy distribution of a star with
the spectral type determined from line strengths.
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15.3 Radiative diffusion

Inside stars, the effective optical depth is large and energy diffuses outward by repeated absorption,
emission and scattering of photons. Lets estimate the flux flowing outward through the star. For
simplicity we consider a small enough region that curvature can be ignored and approximate the
medium as plane-parallel with all physical properties of the medium being a function of height z
alone. For a ray traveling at angle θ we have ds “ dz{ cos θ “ dz{x where we have defined x “ cos θ.
The transfer equation can now be written in the form

Iν “ Sν ´
x

α` σ

BIν
Bz

. (15.24)

The second term is generally small as the intensity changes very little over a distance comparable to
the mean free path l “ 1{pα` σq. So, to first order we can write Iν » Sν » Jν . The latter equality
follows because Sν is not a function of direction. Substituting this into the transfer equation gives
Iν » Sν » Bν . We now have a more accurate, second order, approximation

Iν » Bν ´
x

α` σ

BBν
Bz

. (15.25)

Now compute the specific flux

Fνpzq “

ż

4π
Iν cos θdΩ,

“ 2π

ż 1

´1
Bνxdx´

2π

α` σ

BBν
Bz

ż 1

´1
x2dx,

“ ´
4π

3pα` σq

BBν
BT

BT

Bz
. (15.26)

To compute the total flux, integrate over all frequencies to obtain

F pzq “ ´
4π

3αR

BT

Bz

ż 8

0

BBν
BT

dν, (15.27)

where

αR “

ż 8

0

BBν
BT

dν

O

ż 8

0

1

α` σ

BBν
BT

dν, (15.28)

is a weighted average of the extinction called the Rosseland mean opacity.

The integral in (15.27) can be done as follows

ż 8

0

BBν
BT

dν “
B

BT

ż 8

0
Bνdν,

“
B

BT

σBT
4

π
“

4σBT
3

π
. (15.29)

Thus we obtain

F pzq “ ´
16σBT

3

3αR

BT

Bz
. (15.30)

Equation (15.30) is called the equation of radiative diffusion and plays a key role in theoretical
models of stellar structure.
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15.4 Ionization

We have seen that excitation of atoms is governed by the Boltzmann equation. A related equation,
the Saha equation governs the ionization state of atoms. If njpXrq is the number of atoms, per
unit volume, that are in ionization state r (have lost r electrons), it follows from the fundamental
equation of statistical mechanics that

npXr`1qne
npXrq

´
Zr`1Ze
Zr

, (15.31)

where Zr is the partition function for the atom in ionization state r,

Zr “
ÿ

j

grje
´Erj{T (15.32)

and Ze is the partition function of free electrons, per unit electron density ne.

Since the electron’s position and momentum can vary continuously, its partition function is ex-
pressed as an integral

Ze “
2

h3

ż

e´E{Td3pd3x (15.33)

where the factor of two enters because two electrons can occupy the same phase space volume.
Dividing by the volume gives the partition function

Ze “
2

h3

ż

e´p
2
x{2mTdpx

ż

e´p
2
y{2mTdpy

ż

e´p
2
z{2mTdpz

“
1

4π3
p2πmT q3{2 » 4.83ˆ 1021T 3{2. (15.34)
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16 Hydrodynamics

Much of astrophysics involves the behaviour of gas, either in a neutral or ionized form. Sometimes
the gas is in thermal equilibrium, as in most stars, but in other situations such as supernovae,
outflows from AGN, pulsar magnetospheres, jets, etc, it is far from equilibrium. Often, magnetic
fields play an important role in the dynamics of the gas. Often, relativistic motion is involved.
Understanding the dynamics of gas is therefore an essential part of astrophysics.

We begin this topic by developing the most-important equations that govern gas dynamics. Unlike
many other treatments, we shall start with the relativistic forms of the equations, then obtain the
three-dimensional non-relativistc equations as a limit. We will make simplifying assumptions as
needed to keep the results tractable, with the aim of allowing the underlying physics to emerge.

16.1 Dynamics of a perfect fluid

A perfect fluid is one for which molecular interactions can be ignored. Thus it has no viscosity.
Such a fluid is has two characteristic scalars: the density of mass-energy ρ and an isotropic pressure
P , both defined in the local rest frame of the fluid.

The fundamental relativistic entity that embodies the fluid properties is the energy momentum
tensor. The 00 component of this tensor is the mass-energy density. In the rest frame of the fluid,
we must therefore have T 00 “ ρ. The components T 0α represent the flux of momentum, which in
the rest frame must be zero. Finally, the components Tαβ constitute the three-dimensional stress
tensor, being the α force per unit area acting on an infinitesimal surface that is normal to the β
direction. Since there can be no shear forces in a perfect fluid, this tensor must be diagonal in the
rest frame, with components equal to the isotropic pressure.

The energy-momentum tensor of a perfect fluid must therefore have the form (in the rest frame)

T jk “

¨

˚

˚

˝

ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

˛

‹

‹

‚

(16.1)

We can obtain the covariant form, for an arbitrary frame, by noting that in the rest frame of the
fluid, the four-velocity has the form u “ p1, 0, 0, 0q. Therefore, the components derived above can
be written as

T jk “ pρ` P qujuk ´ Pηjk. (16.2)
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16.2 Euler equations

All energy-momentum tensors are symmetric and satisfy a conservation law. Conservation of mass-
energy is embodied in the requirement that the 4-divergence vanish,

BkT
jk “ 0. (16.3)

This conservation law leads us to the dynamical equations for the gas.

Taking inner product of ~u with the divergence of (16.2) gives a scalar,

ujBkrpρ` P qu
ks ` pρ` P qukBku

j ´ BjP “ 0. (16.4)

Now multiply this equation by uj and sum over j and note that, since uju
j “ 1,

ujBku
j “

1

2
Bkpuju

jq “ 0 (16.5)

Therefore,
Bkrpρ` P qu

ks ´ ujB
jP “ 0. (16.6)

This can be further simplified by noting that ujB
j “ d{dτ . (To prove this, show that it is true

in the rest frame. Since it is a scalar it is therefore true in all frames.) Thus we obtain the
four-dimensional continuity equation

Bkrpρ` P qu
ks “

dP

dτ
(16.7)

If the fluid motion is non-relativistic, P ! ρc2 and dτ » dt so this reduces to the three-dimensional
continuity equation

Bρ

Bt
`∇ ¨ ρv “ 0. (16.8)

The projection tensor Pij “ ηij ´ uiuj projects out the components that are orthogonal to ~u.
Multiply this by the divergence of T jk and sum over the index j (this is called contraction),

pηij ´ uiujq
!

ujBkrpρ` P qu
ks ` pρ` P qukBku

j ´ BjP
)

“ 0,

pρ` P qukBkui ´ pBi ´ uiujB
jqP “ 0. (16.9)

Thus we obtain the relativistic Euler equation,

pρ` P q
dui

dτ
“ BiP ´ ui

dP

dτ
, (16.10)

where
d

dτ
“ ujBj “ γ

ˆ

B

Bt
` v ¨∇

˙

“ γ
d

dt
. (16.11)

d{dt is called the convective derivative and represents the rate of change seen by an observer moving
with the fluid.
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For a nonrelativistic fluid the terms involving both P and uj are much smaller than the term
involving ρ and uk, so this reduces to the three-dimensional Euler equation

ρ
dv

dt
” ρ

ˆ

B

Bt
` v ¨∇

˙

v “ ´∇P (16.12)

(note the change in sign, since Bα “ ´Bα).

The Euler and continuity equations describe the dynamics of the fluid, showing that the acceleration
of a fluid element is driven by the pressure gradient. The Euler equation is nonlinear in v, making
it impossible to solve in general, and giving rise to a rich set of nonlinear phenomena such as
turbulence.

16.3 including gravity

To include gravity, one replaces partial derivatives with covariant derivatives in curved space-time.
However, if the gravitational field is not strong, a Newtonian approximation will suffice. The
Newtonian gravitational field Φ is defined as (minus) the energy per unit mass required to remove
a fluid element to infinity. This is not a Lorentz scalar, so we define it as the gravitational potential
in the rest-frame of the fluid. In natural units Φ is dimensionless and, for weak gravitational fields,
it is much smaller than unity.

We must now replace the Minkowski tensor ηjk by the metric tensor gjk “ ηjk ` 2Φδ̄jk, which in
the weak-field limit, has components

gjk “

¨

˚

˚

˝

1` 2Φ 0 0 0
0 ´1` 2φ 0 0
0 0 ´1` 2φ 0
0 0 0 ´1` 2φ

˛

‹

‹

‚

. (16.13)

Here δ̄jk is a tensor whose components, in the rest frame of the fluid, are equal to those of the unit

matrix. (It is not the same as the Kronecker tensor δjk, which has these same components in all
reference frames.)

Also, the divergence of the energy momentum tensor must be replaced by the covariant divergence,

∇kT
jk “

1
?
´g
Bkp
?
´gT jkq ´

1

2
T lkBjglk (16.14)

where g “ detpgjkq » ´p1´ 4Φq is the determinant of the metric tensor.

Keeping terms to first order in Φ we get

∇kT
jk “

1

1´ 2Φ
Bkrp1´ 2ΦqT jks ´ T lkδ̄lkB

jΦ,

“ BkT
jk ´ 2T jkBkΦ´ pρ` 3P qBjΦ,

“ BkT
jk ´ 2pρ` P quj

dΦ

dτ
´ pρ` P qBjΦ. (16.15)
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Therefore,

uj∇kT
jk “ ujBkT

jk ´ 3pρ` P q
dΦ

dτ
“ 0. (16.16)

From this we see that the continuity equation becomes

Bkrpρ` P qu
ks “

dP

dτ
` 3pρ` P q

dΦ

dτ
(16.17)

and the Euler equation becomes

pρ` P q
duj

dτ
“ BjP ´ uj

dP

dτ
` pρ` P q

ˆ

BjΦ´ uj
dΦ

dτ

˙

(16.18)

The nonrelativistic counterparts are

B

Bt
ρp1´ 3Φq “ ´∇ ¨ ρv ` 3ρv ¨∇Φ, (16.19)

ρ
d

dt
vp1` Φq “ ´∇P ´ ρ∇Φ. (16.20)

16.4 Hydrostatic equilibrium and polytropes

An important special case is that of a static fluid in equilibrium. A star, for example. Then the
time derivatives vanish and the Euler equation reduces to the equation of hydrostatic equilibrium

∇P “ ´ρ∇Φ. (16.21)

For the case of spherical symmetry this becomes

dP

dr
“ ´ρ

dΦ

dr
“ ´ρgprq (16.22)

where gprq is the local gravitational acceleration. This is one of the fundamental equations of stellar
structure.

Taking the divergence of (16.21) and using Poisson’s equation

∇2Φ “ 4πGρ (16.23)

we obtain

∇ ¨ 1

ρ
∇P “ ´4πGρ. (16.24)

To simplify this further, suppose that the equation of state of the gas has the form

P “ Kρ1`1{n. (16.25)

where n is a constant called the polytropic index. For example an ideal gas at constant temperature
would have n “ 8 and K “ T {m. Substituting for P gives an equation for ρ,

∇ ¨ 1

ρ
∇ρT “ ´4πmGρ. (16.26)
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In the case of an isothermal gas, T is a constant so this becomes

∇2ln ρ “ ´
4πGn

Kpn` 1q
ρ. (16.27)

In the case of spherical symmetry, this is the equation for an ideal gas sphere, which gives a good
approximation for the density profiles of hot gas in clusters of galaxies.

More generally, the substitutions ρ “ ρcθ
n and r2 “ rpn ` 1qKρ

p1´nq{n
c {4πGsξ2 gives the dimen-

sionless Lane-Emden equation,
1

ξ2

d

dξ

ˆ

ξ2dθ

dξ

˙

` θn “ 0. (16.28)

This non-linear equation can be solved numerically, typically with initial conditions θp0q “ θ1p0q “
0. The resulting solutions describe polytropic gas spheres or polytropes, which are a useful approx-
imation in the theory of stellar structure.

16.5 Viscosity

So far we have restricted our attention to perfect fluids. In fact all fluids exhibit some degree of
viscosity. Viscosity describes the transfer of momentum within the fluid, either by interactions of
the fluid particles or by diffusion. To account for this we must add to the energy momentum tensor
a term σjk that involves only spatial derivatives of the velocity, and which vanishes in the case of
a pure rotation (see Landau and Lifshitz, em Fluid Mechanics).

In three dimensions, the most general form that satisfies these conditions is Bαvβ ` Bβvα. We
separate this into two parts, a trace-free tensor and a diagonal tensor, multiplied by coefficients η
and ζ that are independent of the velocity. Thus the three-dimensional viscous stress tensor is

σαβ “ ηpBαvβ ` Bβvα ´
2

3
δαβBγv

γq ` ζδαβBγv
γ . (16.29)

The four-dimensional viscous stress tensor can now be inferred. To do this we note that in the
rest frame, σjk does not contribute to the energy density or overall momentum flux, so in this
frame σ00 “ σ0α “ 0. Therefore, we must multiply the four-dimensional version of (16.29) by the
projection operator gjk ´ ujuk in order to eliminate the 00 and 0α components. This leads us to
the result

σjk “ ´ηrpBj ´ ujulBlqu
k ` pBk ´ ukulBlqu

js ´ pζ ´
2

3
ηqpgjk ´ ujukqBlu

l. (16.30)

η and ζ are called coefficients of viscosity. They are functions of pressure and temperature, but in
many cases may be regarded as constant within the fluid.

Including viscosity, but not gravity, the nonrelativistic form of the Euler equation becomes

ρ
dv

dt
“ ´∇P ` η∇2v ` pζ `

1

3
ηq∇p∇ ¨ vq. (16.31)

which is called the Navier-Stokes equation.
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16.6 The Jeans instability

Sir James Jeans (1902, Philosophical Transactions of the Royal Society A 199, 1) first examined
the stability of a gas cloud. He showed that gravitational collapse occurs if the cloud is massive
enough for gravity to overcome the internal gas pressure. The minimum stable mass is called the
Jeans mass.

To analyze this, we start with the nonrelativistic equations for a perfect fluid coupled to gravity,
derived in the previous section. In the case of a weak gravitational field, these are

Bρ

Bt
“ ´∇ ¨ ρv, (16.32)

ˆ

B

Bt
` v ¨∇

˙

v “ ´
1

ρ
∇P ´∇Φ. (16.33)

To these we add the equation of state and Poisson’s equation,

P “ c2
sρ, (16.34)

∇2Φ “ 4πGρ. (16.35)

Here cs “
a

T {m is the sound speed in the gas, which depends on temperature T and mean
molecular mass m. We assume that the cloud is isothermal and has a homogeneous composition
so that cs is constant. We now eliminate the variables P and Φ to get

Bρ

Bt
“ ´∇ ¨ ρv, (16.36)

∇ ¨
ˆ

B

Bt
` v ¨∇

˙

v “ ´c2
s∇ ¨

1

ρ
∇ρ´ 4πGρ. (16.37)

The second equation is nonlinear, but in order to determine stability, we need only consider small
departures from the equilibrium state. This allows us to linearize the equations. We write

ρ “ ρ0 ` ρ1, (16.38)

v “ v0 ` v1, (16.39)

where the subscript 1 denotes a small perturbation. Thus, ρ1 ăă ρ0. The subscript 0 denotes the
equilibrium values of the parameters. We suppose that the cloud is initially at rest, so v0 “ 0.

Now substitute these expressions in the equations and keep only terms up to first order in the
perturbations. This gives

B

Bt
pρ0 ` ρ1q “ ´∇ ¨ ρ0v1, (16.40)

∇ ¨ Bv1

Bt
“ ´c2

s∇ ¨
1

ρ0 ` ρ1
∇pρ0 ` ρ1q ´ 4πGpρ0 ` ρ1q. (16.41)
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The equations must also be satisfied if we set all the perturbations equal to zero, since the perturbed
configuration was, by assumption, a solution. Thus,

Bρ0

Bt
“ 0, (16.42)

0 “ ´c2
s∇ ¨

1

ρ0
∇ρ0 ´ 4πGρ0. (16.43)

Subtracting the unperturbed equations from the perturbed equations produces the linearized equa-
tions,

Bρ1

Bt
“ ´ρ0∇ ¨ v1 ´ v1 ¨∇ ¨ ρ0 (16.44)

∇ ¨ Bv1

Bt
“ ´

c2
s

ρ0
∇2ρ1 ` 4πGρ1. (16.45)

We shall assume that the density distribution is initially smooth, so that the second term on the
RHS of the first equation is negligible. (This is called the Jeans swindle.)

We now look for plane-wave solutions, in the form

ρ1 “ ρ̄1e
ipωt´k¨rq, (16.46)

v1 “ v̄1e
ipωt´k¨rq, (16.47)

where the barred symbols are constants. Substituting these in the linearized equations, we get

iωρ̄1 “ iρ0k ¨ v̄1 (16.48)

ωk ¨ v̄1 “
c2
s

ρ0
k2ρ̄1 ` 4πGρ̄1. (16.49)

Eliminating the velocity, we get the dispersion equation.

ω2 “ c2
sk

2 ´ 4πGρ0. (16.50)

On small scales, k " 4πGρ{c2
s, gravity is unimportant and we can ignore the last term. The solution

then corresponds to acoustic waves propagating at the sound speed cs. However on larger scales
the situation changes. if k2 ă 4πGρ{c2

s then ω2 ă 0 and the density grows exponentially with time.
Thus, fluctuations having a characteristic scale λ “ 2π{k greater than the Jeans length

λJ “ cs

c

π

Gρ
“

ˆ

πT

GρµmH

˙1{2

(16.51)

are unstable.

The quantity 1{
?
Gρ has units of time and is roughly equal to the gravitational collapse time. We

see that the Jeans length is roughly the distance travelled by a sound wave in one collapse time. On
scales larger than this there is no way for thermal pressure to stabilize the cloud before it collapses.

For a spherical cloud, the Jeans mass is

MJ “
4πρ

3

ˆ

λJ
2

˙3

“
π5{2c3

s

6G3{2ρ1{2
. (16.52)

In SI units it has the value

MJ “ 1.559 T 3{2µ´2
´ n

109

¯´1{2
Md. (16.53)
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17 Plasmas

Plasmas are gasses that are highly ionized. They constitute the matter of stars, the hot interstellar
and intergalactic medium, magnetospheres, accretion disks and astrophysical jets.

Because the particles in a plasma are charged, they are strongly affected by electromagnetic fields.
Thus, we will need to modify the equations of fluid dynamics to include electromagnetic forces.
This will lead to the study of magnetohydrodynamics. But first, we examine the propagation of
electromagnetic waves in a plasma.

17.1 Plasma frequency

When an EM wave propagates in a plasma, the oscillating electric field in the wave produces in
oscillating motion of the electrons. This in turn generates an electromagnetic field that combines
that of the wave, altering the propagation. Ions also contribute, but their much larger mass results
in a much lower acceleration so the effect of the ions is tiny.

Recall that the Lorentz force on a single electron gives

m
duj

dτ
“ ´eF jkuk (17.1)

Moving electrons constitute a current. If the electron density (in the rest frame of the fluid) is n,
the current density is

jj “ ´enuj . (17.2)

Therefore,
djj

dτ
“
ne2

m
F jkuk (17.3)

In turn, the current density generates an electromagnetic field which adds to that of the wave. This
induced field is given by Maxwell’s equations,

BjF
jk “ jk (17.4)

Thus
d

dτ
BjF

jk “
ne2

m
F kjuj “ ´

ne2

m
ujF

jk (17.5)

If there is no static electric or magnetic field, F jk represents only the electromagnetic wave and

can be written in the form (for a plane wave) F jk “ F jkei
~k¨~x. Therefore

„

piulklqikj `
ne2

m
uj



F jk “ 0. (17.6)

Since F jk represents an arbitrary wave, it follows that all components of the vector in brackets
must be zero. Therefore,

piulklqikj “ ´
ne2

m
uj . (17.7)
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Multiplying by kj and contracting, we get

k2 “
ne2

m
(17.8)

This is the dispersion relation for the wave. In 3` 1 notation it becomes

k2 “ ω2 ´ ω2
p, (17.9)

where

ω2
p “

ne2

m
(17.10)

is called the plasma frequency.

The phase velocity of the wave is given by

cp “
ω

|k|
“ c

˜

1´
ω2
p

ω2

¸´1{2

, (17.11)

and the group velocity is

cg “
dω

d|k|
“ c

˜

1´
ω2
p

ω2

¸1{2

. (17.12)

We see that the phase velocity exceeds the speed of light, but of course the group velocity does not.

It is evident that a problem occurs if ω ă ωp. The modulus of the wave vector k then becomes
imaginary! This means that the wave no longer oscillates, but is exponentially attenuated. Thus
low-frequency waves, having ω ď ωp cannot propagate in a plasma.

The variation of the group velocity with frequency gives rise to dispersion. A pulse of radiation,
produced by a pulsar for example, contains a range of frequencies. These propagate at different
speeds through the interstellar medium. As a result, the pulse width increases with distance. The
time required for a frequency ω to travel a distance d is

t “

ż d

0

ds

vg
“

ż d

0

˜

1´
ω2
p

ω2

¸´1{2

ds, (17.13)

»

ż d

0

˜

1`
ω2
p

2ω2

¸

ds, (17.14)

“ d`
e2

mω2
D, (17.15)

where

D “
ż d

0
nds, (17.16)

is the dispersion measure.
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17.2 Faraday rotation

If a magnetic field is present, the polarization of propagating waves is affected. Linearly-polarized
radiation can be written as the sum of equal right and left hand circularly-polarized components,

E “ Epε1 ˘ iε2qe
iωt, (17.17)

where ε1 and ε1 are orthogonal unit vectors in the plane transverse to the propagation direction.
Each component will induce a circular motion of the electrons with frequency ω, around the direc-
tion of propagation, but in opposite directions.

The presence of a magnetic field component parallel to the direction of propagation changes the
frequency of the orbital motion to ω ˘ ωB, where

ωB “
eB

γm
(17.18)

is the cyclotron frequency. As a result, the dispersion relation becomes

k2 “ ωpω ˘ ωBq ´ ω
2
p (17.19)

and we have a different group velocity for the RHC and LHC polarizations. Because of this,
the plane of polarization of linearly-polarized light will rotate as it propagates. The change in
polarization angle after propagating a distance d is given by (Rybicki and Lightman),

∆θ “
e3

2m2ω2

ż d

0
nB‖ds (17.20)

where B‖ is the component of the magnetic field along the line of sight.

Measurements of the rotation at several frequencies can provide information about the field strength
if the electron density is known (from dispersion measurements for example). However, if the field
changes direction along the line of sight, this will provide only a lower limit.

17.3 Magnetohydrodynamics

An ionized fluid is subject to electric and magnetic forces. We can accommodate this by adding
the volume density of the Lorentz four-force to the relativistic Euler equation. If viscosity can be
ignored, we obtain

pρ` P q
dui

dτ
“ BiP ´ ui

dP

dτ
` F ikjk, (17.21)

where jj is the four-current density. In turn, fluid motion generates magnetic fields, BjF
jk “ jk.

Thus we arrive at the equation of motion

pρ` P q
dui

dτ
“ BiP ´ ui

dP

dτ
` F ijBkFkj , (17.22)
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We could have arrived at the same result by adding to the energy momentum tensor of the elec-
tromagnetic field to that of the fluid. In natural units, it is

T jk “ F jlF k
l `

1

4
ηjkF lmFlm. (17.23)

Taking the divergence of this tensor, and projecting orthogonal to u, gives the same Lorentz term.

In 3` 1 notation, the relativistic Euler equation becomes

γpρ` P q
dγ

dt
“
BP

Bt
´ γ2dP

dt
´E ¨∇ˆB `E ¨ BE

Bt
, (17.24)

γpρ` P q
dγv

dt
“ ´∇P ´ vBP

Bt
` p∇ ¨EqE ´B ˆ∇ˆB `B ˆ BE

Bt
, (17.25)

Multiplying the first equation by v and subtracting it from the second, we get

γ2pρ` P q
dv

dt
“ ´∇P ´ γ2v

BP

Bt
´B ˆ J ` ρeE ` pE ¨ Jqv. (17.26)

where

ρe “ ∇ ¨E, (17.27)

J “ ∇ˆB ´ BE
Bt

(17.28)

are the three-dimensional charge and current densities. Generally, the time derivative of the electric
field is small compared to the curl of the magnetic field and we can just take J “ ∇ˆB.

If we now assume that the motion is non-relativistic, (17.26) reduces to

ρ
dv

dt
“ ´∇P ´B ˆ J ` ρeE ` pE ¨ Jqv. (17.29)

The terms on the RHS correspond to the pressure force, the magnetic force, the electrostatic force,
and a drag term due to energy dissipation by the current. Generally, the last two terms can be
neglected and the equation reduces to

ρ
dv

dt
“ ´∇P ´B ˆ p∇ˆBq, (17.30)

The current density produced by the Lorentz force, in the non-relativistic limit, is given by

J “ σpE ` v ˆBq, (17.31)

where σ is the conductivity of the plasma. In general, the conductivity is large, which means that

E » ´v ˆB. (17.32)

From this we see that
E ¨B » ´pv ˆBq ¨B “ ´v ¨ pB ˆBq “ 0. (17.33)
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so the electric and magnetic fields are orthogonal. (Physically, if the conductivity is high the charges
will quickly move along the magnetic field lines to cancel any parallel component of the electric
field.)

Maxwell’s equations provide the following additional relations,

∇ ¨B “ 0, (17.34)

BB

Bt
“ ´∇ˆE “ ∇ˆ pv ˆBq. (17.35)

It is worth noting that particle motion in the presence of a magnetic field is conservative. The
Lorentz force F “ qvˆB produces an acceleration that is perpendicular to the velocity. Therefore
dE{dt “ v ¨ F “ 0. The magnetic field does no work and, if there are no non-magnetic forces, the
kinetic energy of the particle is constant.

17.4 Adiabatic invariants

In a system undergoing periodic motion, in which some parameter varies slowly, compared to the
period, there is a conserved quantity I called an adiabatic invariant (see for example, Landau
and Lifshitz, Mechanics, §49). If p and q are conjugate variables, the adiabatic invariant can be
expressed as an integral along the classical trajectory of the system in phase space,

I “
¿

p ¨ dq. (17.36)

Let’s apply this to the orbital motion of a charge e in a plane perpendicular to the magnetic field.
The generalized momentum is given by

p “ γmvK ` qA (17.37)

where A is the vector potential. The generalized coordinate is the position vector r of the charge.
Thus

I “ 2πrγmvK ` q

¿

A ¨ dr. (17.38)

The line integral can be converted to a surface integral using Stokes theorem,

I “ 2πrγmvK ´ q

ż

p∇ˆAq ¨ dS,

“ 2πrγmvK ´ q

ż

B ¨ dS,

“ 2πrγmvK ´ qπr
2B. (17.39)

Here r is the radius of the orbit, which is given by

r “
vK
ωB

“
γmvK
qB

(17.40)
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Substituting this in the previous equation gives

I “ π
γ2m2v2

K

qB
“ qπr2B (17.41)

Therefore, for nonrelativistic motion, the magnetic moment

µ “
mv2

K

2B
(17.42)

is a an adiabatic invariant. For relativistic motion, multiply this by γ2. In all cases, the magnetic
flux φ “ πr2B, enclosed by the orbit, is invariant.

17.5 Magnetospheres

An example of a plasma coupled to a magnetic field is a planetary magnetosphere. The magnetic
field is produced by currents circulating in a liquid core of the planet and has a dipole structure
(Fig 17.1). Charged particles from the solar (or stellar) wind penetrate the magnetosphere and are
captured into orbits that spiral around magnetic field lines.

Figure 17.1: Sketch of the Earth’s magnetosphere. Lines show the magnetic field and the blue sur-
face represents the magnetopause, the boundary between the interplanetary and terrestrial magnetic
field. The purple region shows the Van-Allen belts, a region of high density of trapped charged
particles. (credit: NASA)
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Where the energy density of the magnetic field B2{2 exceeds that of the particles ρv2{2, the
magnetic field is not much affected by the particles. The particles move in helical orbits along the
magnetic field lines. Where the energy density of the particles exceeds that of the magnetic field,
the magnetic field lines are dragged by the flow of the plasma.

In the inner region of the magnetosphere, where the magnetic field strength is high, charged particles
become trapped. As they move along the field lines the field strength increases as they approach
the planet. Since the magnetic moment of the particle’s orbital motion is an adiabatic invariant,
the particle’s transverse kinetic energy mv2

K{2 must increase in proportion to the field strength.
The total energy of the particle remains constant, so the velocity component v‖, parallel to the
magnetic field must decrease. At some point the parallel velocity reaches zero and then reverses
direction. The particle then spirals backward, away from the planet. This is called a magnetic
mirror.

Particles trapped in the magnetosphere travel forwards and backwards along the magnetic field,
between the mirror points. At the point of closest approach to the planet, they may enter the
upper atmosphere. Collisions between energetic charged particles and atoms or molecules in the
atmosphere excite the atoms which then radiate producing an aurora. The terrestrial aurora consists
primarily of emission lines of oxygen and hydrogen which arise in the upper mesosphere and lower
thermosphere, some 100 km or more above the Earth’s surface.

17.6 Fermi acceleration

Enrico Fermi first proposed a mechanism for accelerating particles by interaction with magnetic
fields. We have seen that converging field lines, corresponding to increasing magnetic field strength,
can reflect charged particles. If the field configuration is moving, the reflected particles will gain or
loose energy, just as if they were being reflecting by a moving surface.

A collision a particle and an approaching mirror will increase the particle energy, while a particle
reflected by a receding mirror will loose energy. However, Fermi realized that collisions with an
approaching mirror happen more frequently than collisions with a receding mirror. The rate with
which a mirror collides with particles is given by the usual formula nσv, where σ is the number
density of targets (particles in this case), σ is the collision cross-section and v is the relative velocity.
This is obviously higher for approaching collisions that for receding collisions.

Fermi acceleration is believed to be a principal mechanism for the acceleration of cosmic ray particle
by interstellar magnetic fields and shock waves.
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17.7 Hydromagnetic waves

To investigate waves in a plasma, we consider small perturbations ρ1, P1, B1, v from an equilibrium
state in which the fluid is at rest in a uniform magnetic field B. Substituting ρ “ ρ0` ρ1, etc, into
the non-relativisitic equations gives the linearized equations

∇ ¨B1 “ 0, (17.43)

BB1

Bt
“ ∇ˆ pv ˆBq, (17.44)

Bρ1

Bt
“ ´ρ∇ ¨ v, (17.45)

ρ
Bv

Bt
“ ´c2

s∇ρ1 ´B ˆ p∇ˆB1q, (17.46)

where we have dropped the unnecessary subscript 0.

We now look for plane-wave solutions proportional to expripωt´k¨rqs. Substitution in the linearized
equations then gives a system of algebraic equations,

k ¨B1 “ 0, (17.47)

ωB1 “ ´k ˆ pv ˆBq, (17.48)

ωρ1 “ ρk ¨ v, (17.49)

ρωv “ `c2
sρ1k `B ˆ pk ˆB1q, (17.50)

The first equation is satisfied automatically by the second, which shows that B1 is perpendicular
to k.

Solve the third equation for ρ1 and substitute this in the fourth. The equations become

ωB1 “ ´k ˆ pv ˆBq,

“ ´pk ¨Bqv ` pk ¨ vqB (17.51)

ρωv “
c2
s

ω
ρpk ¨ vqk `B ˆ pk ˆB1q,

“

„

c2
s

ω
ρpk ¨ vq ` pB ¨B1q



k ´ pB ¨ kqB1 (17.52)

to simplify this, set up a Cartesian coordinate system with k lying along the x axis and B lying in
the x´ y plane. The z component of our equations is

ωB1z “ ´pk ¨Bqvz, (17.53)

ρωvz “ pk ¨BqB1z, (17.54)

where the symbols ‖ and K denote components parallel and perpendicular to k. Combining these
two equations, we find the dispersion relation

ω “
k ¨B
?
ρ
. (17.55)
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These correspond to waves propagating with speed

vA “
B‖
?
ρ

(17.56)

which are called Alfvén waves (H. Alfvén, 1942). The physical propagation velocity (group velocity)
is

v “
Bω

Bk
“
B
?
ρ
, (17.57)

which shows that the wave energy propagates in the direction of the magnetic field B, not the
direction k.

Let’s now look at the x and y components of the equations,

ωB1y “ ´kBxvy ` kvxBy, (17.58)

ρωvy “ ´kBxB1y, (17.59)

ρωvx “
c2
s

ω
ρk2vx ` kByB1y. (17.60)

Eliminating the variables vx, vy and B1y gives the dispersion relation

pω2 ´ c2
sk

2qpρω2 ´ k2B2
xq “ ω2k2B2

y . (17.61)

This is a quadratic equation for ω2, which has the solutions

ω2 “
k2

2

$

&

%

c2
s `

B2

ρ
˘

«

ˆ

c2
s `

B2

ρ

˙2

´ 4c2
s

B2
x

ρ

ff1{2
,

.

-

. (17.62)

The two solutions correspond to fast and slow magnetosonic waves. Note that as B Ð 0, we have
vy Ñ 0 and ω2 Ñ c2

sk
2 and the fast magnetosonic waves reduce to ordinary acoustic waves. The

presence of a magnetic field induces transverse oscillations in the magnetic field and fluid velocity.
In the same limiting case, the velocity of the slow magnetosonic waves approaches the Alfvén
velocity. These become Alfvén waves, but with a different polarization.

Alfvén waves can be though of as transverse waves propagating along the magnetic field lines, much
like a vibrating string. The restoring force is provided by the magnetic tension B2 and the inertia
by the mass density ρ.
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18 Shock waves

Shock waves occur in many astrophysical environments, wherever supersonic gas flows occur. For
example, a bow shock forms when the solar wind encounters a planetary magnetosphere (Figure
17.1). Exploding stars create shock waves when the supersonic ejecta encounter the interstellar
medium, and also within the star itself when the core collapses. The external shock compresses
and heats the ISM and may trigger star formation. Encounters between galaxies create shock
waves when gas clouds collide. This is the likely source of the hot X-ray plasma found in early-type
galaxies and clusters.

This section provides a brief introduction to shock waves. We shall assume a perfect gas and neglect
gravity and magnetic fields. A treatment of MHD shock waves can be found in Somov 2006, Plasma
Astrophysics, Part I.

Shock waves provide an efficient mechanism for converting kinetic energy of fluid motion into heat.
The flow rapidly decelerates when passing through a shock wave, and the effect on the gas depends
on conditions in the shock. It is instructive to consider to extreme cases. In an adiabatic shock, there
is no energy loss by radiation, so energy (more precisely entropy) is conserved. In an isothermal
shock, the released energy is efficiently radiated away and the temperature is unchanged. Real
shock waves lie between these extremes.

It will be useful to introduce several thermodynamic quantities. We define ε as the internal energy
per unit mass. This is the energy in internal degrees of freedom, not related to the motion of the
gas. It is related to the specific enthalpy w by the thermodynamic relation

w “ ε` PV, (18.1)

where V “ 1{ρ is the volume per unit mass. The enthalpy consists of the internal energy, per unit
mass, of the fluid, plus the work done against pressure forces to open up a volume V for the fluid.
In non-relativistic adiabatic flow of a compressible fluid, the quantity

w `
1

2
v2 (18.2)

is conserved. This is Bernoulli’s theorem, and can be obtained by integrating Euler’s equation.

In terms of the internal energy, the equation of state for a perfect gas can be written as

P “ ρpγ ´ 1qε, (18.3)

where γ is a constant called the adiabatic index. For a non-relativistic monatomic gas, γ “ 5{3.
For a relativistic gas, γ “ 4{3.

Now define the specific entropy s to be the entropy per unit mass. The first law of thermodynamics
takes the form

Tds “ dε` PdV,

“ dε´
P

ρ2
dρ. (18.4)

(18.5)
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Therefore,

pγ ´ 1qTds “ d

ˆ

P

ρ

˙

´ pγ ´ 1q
P

ρ2
dρ,

“
dP

ρ
´ γ

P

ρ2
dρ (18.6)

For an adiabatic change, ds “ 0, thus

dP “ γ
P

ρ
dρ, (18.7)

and we obtain the adiabatic law
P 9 ργ . (18.8)

From this we see that

c2
s “

dP

dρ
“ γ

P

ρ
“ γPV. (18.9)

We approximate the shock as a thin surface of discontinuity, and consider what quantities must
be conserved as the gas passes through it. In the rest frame of the shock, gas flows into the shock
from one side and flows out on the other. We shall assume that the velocities, in this frame, are
nonrelativistic. Let v1 and v2 be the components of the velocity perpendicular to the shock on the
upstream and downstream sides (called the front and the back of the shock), respectively. Similarly
let ρ0 and ρ1 be the density immediately upstream and downstream of the shock, etc. Conservation
of mass requires that the mass flux j “ ρv be the same on both sides of the shock. Similarly, the
flux of momentum must also be conserved. Thus flux is P ` pρvqv. Finally, for an adiabatic shock,
the energy flux ρvpw ` v2{2q must be continuous. This leads us to the equations

ρ1v1 “ ρ2v2 ” j, (18.10)

P1 ` ρ1v
2
1 “ P2 ` ρ2v

2
2, (18.11)

w1 `
v2

1

2
“ w2 `

v2
2

2
. (18.12)

These are known as the Rankine-Hugoniot relations, named after two engineers who first worked
on this problem. They are sometimes called the jump conditions.

Substituting V “ 1{ρ and solving (18.10) for v1 and v2,

v1 “ jV1, (18.13)

v2 “ jV2. (18.14)

Substituting these in (18.11) we find

j2 “
P2 ´ P1

V1 ´ V2
. (18.15)

From this, we see that the speed v1, at which a shock propagates through a medium, depends on
the pressure and density differences across the shock. From (18.13) and (18.14) we find the velocity
change across the shock,

v1 ´ v2 “
a

pP2 ´ P1qpV1 ´ V2q. (18.16)
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Eqn. (18.12) can be written as

w1 `
1

2
j2V 2

1 “ w2 `
1

2
j2V 2

2 . (18.17)

which leads to

w1 ´ w2 “
1

2
j2pV 2

1 ´ V
2

2 q,

“
1

2
pP1 ´ P2qpV1 ` V2q. (18.18)

This can also be written in terms of the internal energy,

ε1 ´ ε2 `
1

2
pP1 ` P2qpV1 ´ V2q “ 0 (18.19)

These equations relate the final pressure and density to the initial pressure and density.

For an adiabatic shock, we have (from 18.1, 18.3 and 18.9),

ε “
PV

γ ´ 1
“

c2
s

γpγ ´ 1q
, (18.20)

w “ γε “
c2
s

γ ´ 1
. (18.21)

Substituting these in (18.19), we obtain

2P1V1 ´ 2P2V2 ` pγ ´ 1qpP1V1 ´ P1V2 ` P2V1 ´ P2V2q “ 0. (18.22)

Solving for V1{V2 we find
ρ2

ρ1
“
V1

V2
“

γ ´ 1qP1 ` pγ ` 1qP2

pγ ` 1qP1 ` pγ ´ 1qP2
. (18.23)

One can express the ratios of density, pressure and temperature across the shock in terms of the
mach number

M “
v1

cs1
. (18.24)

The result is

ρ2

ρ1
“
v1

v2
“

pγ ` 1qM2

pγ ´ 1qM2 ` 2
, (18.25)

P2

P1
“

2γM2

γ ` 1
´
γ ´ 1

γ ` 1
, (18.26)

T2

T1
“
r2γM2 ´ pγ ´ 1qsrpγ ´ 1qM2 ` 2s

pγ ` 1q2M
. (18.27)

From this we see that the maximum possible value of the density ratio ρ2{ρ1 is pγ ` 1q{pγ ´ 1q.
For γ “ 5{3 this ratio is 4. Thus, in an adiabatic shock, the gas is compressed by at most a factor
of four after passing through the shock. This limit can be exceeded if the gas radiates significant
energy, allowing it to cool. The adiabatic assumption then fails.
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