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Spectroscopy

Radial velocities of stars are measured using a spectrograph (or
spectrometer). This instrument takes the light passing through a
slit and disperses it in wavelength so that Fλpλq can be measured.

Diffraction, slit width and optical aberrations limit the spectral
resolution ∆λ, the observed width of a narrow emission line.

The spectral resolving power is defined by R “ λ{∆λ. Typically
it ranges from a few thousand for a low-resolution spectrograph to
several hundred thousand for a high-resolution spectrograph.

For a single star, the observed wavelength λ of a spectral line is
related to the emitted wavelength λ0 by

λ0 » λr1´ vr{cs

where vr is the radial velocity of the star.
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Velocity dispersion
For a galaxy, we must integrate along the line of sight to find the
total emission at any position on the sky.

In an elliptical galaxy, stars have random velocities. Taking the z
direction along the line of sight, the number density of stars having
velocity vz along the line of site is given by the distribution
function fpx, vzq. So the flux that we measure can be written as,

Fλpλq “

8x

´8

Fλpλr1´ vz{csqfpx, vzqdzdvz.

Typically, one assumes a Gaussian velocity distribution,
ż 8

´8

dzfpx, vzq “ expr´pvz ´ Vrq
2{2σ2z s

where σz (or just σ) is the velocity dispersion. So,

Fλpλq “

ż 8

´8

Fλpλr1´ vz{csq expr´pvz ´ Vrq
2{2σ2z sdvz.
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Velocity dispersion

This integral is a kind of convolution. Each spectral line is
broadened due to the velocity distribution of the stars. The greater
the velocity dispersion, the broader are the lines.

By measuring the width of the spectral lines, one can infer the
velocity dispersion.

The observed central wavelength of the line tells us the systematic
velocity, which may be a combination of the Hubble expansion
velocity and any rotation of the galaxy.

The velocity dispersion tells us about the random component of
the stellar velocities. In the disk of a spiral galaxy, this is small
compared to the rotation speed, but in an elliptical galaxy random
velocities dominate.
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Measured radial velocity Vr and velocity dispersion σr on the major axis of cD
galaxy NGC 1399; vertical bars show uncertainties. Notice that
(Vr ´ Vsysq{σr ! 1; Vr reverses slope in the central few arcseconds.
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The Faber-Jackson relation

in 1976 Sandra Faber and Robert Jackson discovered that the
velocity dispersions of elliptical galaxies correlate with luminosity,
L 9 σ4. In the V band one has

LV
2ˆ 1010Ld

»

ˆ

σ

200 km s´1

˙4

.

This is the Faber-Jackson relation. It is the equivalent of the
Tully-Fisher relation found for spiral galaxies.

Because, for ellipticals, there is a tight correlation between galaxy
luminosity, radius and surface brightness, there are different forms
that the relation can take, such as

Re 9 σ1.2I´0.8e .

This is another example of the fundamental plane for elliptical
galaxies, in this case in a space spanned by σ, Re, and Ie.
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Left, central velocity dispersion σ plotted against IpReqR
2
e (proportional to

blue luminosity LB). The dashed line shows LB 9 σ4. Right, the fundamental
plane. Open circles represent elliptical galaxies in the Coma cluster; filled circles
show those at redshifts 0.8 ă z ă 1.2.
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Rotation in elliptical galaxies

Rotation can produce oblate shapes, but not prolate or triaxial
shapes.

If elliptical galaxies are oblate due to rotation, then the intrinsic
axis ratio should be related to the rotation speed. In particular,
they should fall close to the dashed line shown in the figure on the
next slide.

However, many galaxies have rotation speeds that are much lower
than this prediction. So their flattened or elongated shapes cannot
be due to rotation.

Instead, elliptical galaxies maintain their shapes because of an
anisotropic velocity distribution.

The luminosity and isophotal shape is found to correlate with the
rotation speed. Luminous ellipticals rotate more slowly and are
more likely to have boxy isophotes.
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The ratio of measured peak rotation speed Vmax to central velocity dispersion σ
for elliptical galaxies, plotted against apparent ellipticity. Filled circles show
bright galaxies (MB ă ´19.5); open circles are dimmer galaxies. Points with
downward-extending bars indicate upper limits on Vmax. The dashed line gives
pV {σqiso, the fastest rotation expected for a given flattening.
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The ratio pV {σq˚ of measured Vmax{σ to pV {σqiso, the rotation expected for an
oblate galaxy according to Equation 6.29. Downward-pointing bars show upper
limits on Vmax; filled circles are bright galaxies, with MB ă ´19.5 for H0 “ 75
km s´1 Mpc´1. Left, luminous galaxies often rotate slowly, falling below the
dotted horizontal line at pV {σq˚ “ 0.7. Right, boxy galaxies, with a4 ă 0, are
almost all slow rotators; many of these are luminous.
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Violent relaxation

We saw that the relaxation time due to stellar encounters in
galaxies is much longer than the age of the Universe. So why are
elliptical galaxies so smooth?

The answer was provided in 1967 by Cambridge astrophysicist
Donald Lynden-Bell. Lynden-Bell pointed out that when galaxies
are being assembled, by mergers of smaller galaxies or
proto-galaxies, the gravitational potential can fluctuate wildly on
relatively short time-scales.

If the potential is changing, the orbital energies of stars is not
conserved. Energy is transferred between stars by forces arising
from the fluctuating potential.

The result of this is similar to stellar encounters but much more
effective. The motions of the stars are quickly randomized,
removing most of any pre-existing structure. This is called violent
relaxation.
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Stellar orbits in elliptical galaxies

Some insight into orbits in elliptical galaxies can be gained by
considering a very simple potential - one that corresponds to the
interior of a homogeneous triaxial ellipsoid (ie. constant density).
This is

Φ “ Φ0 `
1

2
pω2
xx

2 ` ω2
yy

2 ` ω2
zz

2q

where Φ0 is a constant and ωx, ωy and ωz are frequencies that
depend on the semi-major axes and the density.

This equation describes a triaxial harmonic oscillator. The orbit
consists of independent harmonic motion in the x, y, and z
directions with corresponding frequencies.

If the frequencies are not rational multiples of each other, the orbit
will completely fill a rectangular box centred on the galaxy and
aligned with the principal axes. This is an example of a box orbit.
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Stellar orbits in elliptical galaxies

If the potential is axisymmetric (oblate or prolate), orbits take the
form of a rosette, with oscillatory motion in a plane that rotates
around the axis of symmetry. These are called loop orbits (also
called tube orbits).

Loop orbits do not pass through the centre of the galaxy. They are
prevented from doing so by conservation of angular momentum
about the symmetry axis.

In triaxial potentials, both box orbits and loop orbits exist. The
loops can circle about any of the principal axes.

Loop orbits around the largest or smallest axis are generally stable,
but orbits around the intermediate axis are unstable.
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Orbits in a triaxial potential. The top left panel shows a loop orbit, which
avoids the center; at the top right is a box orbit, which passes through it; lower
left is a chaotic orbit, produced when a central spherical potential is added.
The lower right panel shows a surface of section: values of (x, vx) for all three
orbits are plotted each time the orbit crosses y “ 0 in the direction vy ą 0.
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