Lecture 12

Phase space methods

Lecturer: Jeremy Heyl
(Notes by Paul Hickson)
4 October 2017
$\cdot y \cdot x$
$x-y$

Phase space distribution function

We could describe a stellar system by specifying the position r and velocity \boldsymbol{v} of every star. The future evolution could then be calculated, at least in principle, by applying Newton's laws.

However, we often don't need that much information, instead a statistical description will suffice.

The distribution function or phase space density $f(\boldsymbol{x}, \boldsymbol{v}, t)$ describes the density of stars in six-dimensional phase space. Phase space has three spatial dimensions x, y, z and three velocity dimensions v_{x}, v_{y}, v_{z}.
The number of stars within a cube of sides $\Delta x, \Delta y$ and Δz, centred at position \boldsymbol{x} with velocity components in the range v_{x} to $v_{x}+\Delta v_{x}, v_{y}$ to $v_{y}+\Delta v_{y}$ and v_{z} to $v_{z}+\Delta v_{z}$ is

$$
\Delta N=f(\boldsymbol{x}, \boldsymbol{v}, t) \Delta x \Delta y \Delta z \Delta v_{x} \Delta v_{y} \Delta v_{z}
$$

Phase space distribution function

In the limit as these volumes go to zero, we can regard $f(\boldsymbol{x}, \boldsymbol{v}, t)$ as the probability of finding a star in the six-dimensional volume element $d^{3} x d^{3} v$,

$$
f(\boldsymbol{x}, \boldsymbol{v}, t)=\frac{d N}{d^{3} x d^{3} v}
$$

The number density of stars can be found by integrating the distribution function over all possible velocities,

$$
n(\boldsymbol{x}, t)=\int f(\boldsymbol{x}, \boldsymbol{v}, t) d^{3} v
$$

The mean velocity of the stars at position \boldsymbol{x} can be found by multiplying the velocity by the distribution function (probability of this velocity) and integrating,

$$
\langle\boldsymbol{v}(\boldsymbol{x}, t)\rangle=\frac{1}{n(\boldsymbol{x}, t)} \int \boldsymbol{v} f(\boldsymbol{x}, \boldsymbol{v}, t) d^{3} v
$$

Continuity equation in three dimensions

Consider a small box of sides $\Delta x, \Delta y, \Delta z$. At time t, the number of stars in the box is $n(x, t) \Delta x \Delta y \Delta z$. After time Δt, the number of stars in the box has changed because some stars will have entered the box and some will have left,

$$
\begin{aligned}
\Delta N= & {[n(\boldsymbol{x}, t)-n(\boldsymbol{x}, t+\Delta t)] \Delta x \Delta y \Delta z } \\
= & v_{x}(x, y, z, t) n(x, y, z, t) \Delta y \Delta z \Delta t \\
& -v_{x}(x+\Delta x, y, z, t) n(x+\Delta x, y, z, t) \Delta y \Delta z \Delta t \\
& + \text { similar terms for the } \mathrm{y} \text { and } \mathrm{z} \text { directions. }
\end{aligned}
$$

Dividing this by $\Delta x \Delta y \Delta z \Delta t$ and taking the limit as the intervals go to zero, we get the continuity equation

$$
\frac{\partial n}{\partial t}=-\frac{\partial}{\partial x}\left(n v_{x}\right)-\frac{\partial}{\partial y}\left(n v_{y}\right)-\frac{\partial}{\partial z}\left(n v_{z}\right)=-\boldsymbol{\nabla} \cdot(n \boldsymbol{v}) .
$$

One-dimensional flow of stars

Fig 3.12 Galaxies in the Universe' Sparke/Gallagher CUP2007

Continuity equation in six dimensions

In the same manner, we can consider the flow of stars in phase space. This gives a six-dimensional continuity equation for the phase space density.

$$
\frac{\partial f}{\partial t}+\boldsymbol{\nabla} \cdot(f \boldsymbol{v})+\boldsymbol{\nabla}_{\boldsymbol{v}} \cdot(f \dot{\boldsymbol{v}})=0
$$

Here the symbol ∇_{v} denotes the divergence operator in velocity space

$$
\boldsymbol{\nabla}_{\boldsymbol{v}}=\left(\frac{\partial}{\partial v_{x}}, \frac{\partial}{\partial v_{y}}, \frac{\partial}{\partial v_{z}}\right)
$$

Note that v_{x}, v_{y}, and v_{z} are treated as independent variables, on par with x, y and z. They are not functions of x, y, or z.

Flow of stars in phase space

Fig 3.13 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Collisionless Boltzman equation

This six-dimensional continuity equation can be simplified by recalling that in phase space, the velocities are independent variables, not functions of x, y, z so $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$. Thus,

$$
\frac{\partial f}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} f+\nabla_{\boldsymbol{v}} \cdot(f \dot{\boldsymbol{v}})=0
$$

The acceleration $\dot{\boldsymbol{v}}$ is given by $-\nabla \Phi$. And, Φ is a function only of position and time, It does not depend on the velocities of the stars. Therefore,

$$
\frac{\partial f}{\partial t}+\boldsymbol{v} \cdot \boldsymbol{\nabla} f-\nabla \Phi \cdot \nabla_{\boldsymbol{v}} f=0
$$

This is the collisionless Boltzmann equation (CBE). It describes the evolution of the phase space density.

The Jeans equations

Often it is simpler to work with moments of the CBE. Integrating it over velocity, and requiring that $f \rightarrow 0$ as $v \rightarrow \infty$, gives the first Jeans equation,

$$
\frac{\partial n}{\partial t}+\nabla \cdot(n\langle\boldsymbol{v}\rangle)=0
$$

This is the statistical equivalent of the continuity equation of fluid dynamics.

Multiplying the CBE by \boldsymbol{v} and integrating over velocity gives the second Jeans equation, the equivalent of the Euler equation of fluid dynamics,

$$
\frac{\partial\langle\boldsymbol{v}\rangle}{\partial t}+(\langle\boldsymbol{v}\rangle \cdot \boldsymbol{\nabla})\langle\boldsymbol{v}\rangle=-\boldsymbol{\nabla} \Phi-\frac{1}{n} \boldsymbol{\nabla}\left(n \sigma^{2}\right) .
$$

where $\sigma(\boldsymbol{x}, t)$ is the velocity dispersion. This last term is the equivalent of a pressure gradient force.

Integrals of motion

An integral of motion is any function of the phase space coordinates \boldsymbol{x} and \boldsymbol{v} that is constant along the orbit of a star.
An example the energy per unit mass $E=v^{2} / 2+\Phi(\boldsymbol{x})$ of a stationary system (i.e. a time-independent potential).

For a spherically-symmetric potential, the angular momentum per unit mass \boldsymbol{L} is an integral of motion. For an axisymmetric system, L_{z} is an integral of motion.

Because they are constant along the orbit, Integrals of motion \mathcal{I} satisfy the equation

$$
\frac{d}{d t} \mathcal{I}(\boldsymbol{x}, \boldsymbol{v}) \equiv \dot{\boldsymbol{x}} \cdot \boldsymbol{\nabla} \mathcal{I}+\dot{\boldsymbol{v}} \cdot \nabla_{v} \mathcal{I}=0
$$

Compare this to the CBE, which can be written in the form

$$
\frac{d f}{d t} \equiv \frac{\partial f}{\partial t}+\dot{\boldsymbol{x}} \cdot \nabla f+\dot{\boldsymbol{v}} \cdot \nabla_{v} f=0
$$

Jeans theorem

Comparing the two equations on the preceding slide, we see that if the distribution function f is not an explicit function of time, it remains constant along the orbits of stars.

In other words, as a star moves in its orbit, the phase space density of stars around it remains constant.
This leads us to an important theorem, due to Jeans:
Any steady-state solution of the CBE can be written as a function only of integrals of the motion, and any function of the integrals of motion is a steady-state solution of the CBE.

As an example of this, the isothermal sphere has the distribution function

$$
f(E)=\frac{n_{0}}{\left(2 \pi \sigma^{2}\right)^{3 / 2}} \exp \left\{-\left[v^{2}+2 \Phi(r)\right] / 2 \sigma^{2}\right\}
$$

Isothermal sphere

The distribution function for the isothermal sphere

$$
f(E)=\frac{n_{0}}{\left(2 \pi \sigma^{2}\right)^{3 / 2}} \exp \left\{-\left[v^{2}+2 \Phi(r)\right] / 2 \sigma^{2}\right\}
$$

has the form $f(E) \propto \exp (-m E / k T)$ where $T=\sigma^{2} / k$ is the kinetic temperature of the system. It is the temperature of a gas in which the atoms would have an RMS velocity equal to σ. Integrating this gives the density,

$$
\rho(r)=m n(r)=4 \pi m \int_{0}^{\infty} f(v) v^{2} d v=m n_{0} \exp \left[-\Phi(r) / \sigma^{2}\right]
$$

Poisson's equation then gives us a differential equation for $\Phi(r)$,

$$
\frac{1}{r^{2}} \frac{d}{d r}\left[r^{2} \frac{d \Phi(r)}{d r}\right]=4 \pi G \rho=4 \pi G m n_{0} \exp \left[-\Phi(r) / \sigma^{2}\right]
$$

This equation is nonlinear, but can be solved numerically.

King models

The isothermal distribution has infinite mass, so cannot describe real star clusters. Ivan King proposed a modified distribution,

$$
f(E)= \begin{cases}\frac{n_{0}}{\left(2 \pi \sigma^{2}\right)^{3 / 2}}\left\{\exp \left[-\left(E-\Phi_{0}\right) / 2 \sigma^{2}\right]-1\right\} & E<\Phi_{0} \\ 0 & E \geqslant \Phi_{0}\end{cases}
$$

The -1 reduces the number of stars with high kinetic energy. The resulting density drops to zero at a finite radius, mimicking the effect of tidal truncation. (Note: Eqn 3.107 in the text book is incorrect.)
These models, which are computed numerically, match the distribution of stars in globular clusters and many elliptical galaxies quite well.

