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Spherically-symmetric systems

If the gravitational potential Φpr, θ, φq is radially symmetric, we
have already seen that the angular momentum of any stellar orbit
L is conserved.

SInce
L “ r ˆ v,

it follows that the orbit is confined to a plane, perpendicular to L.

So the star moves in a plane, but not in an ellipse. Because the
mass is distributed, the gravitational force does not increase as
rapidly as r decreases, compared to a point mass.

As a result, the orbit generally does not close, but traces out a
rosette pattern. As it orbits the galaxy, the star oscillates in radius
between an inner turning point rmin and an outer one rmax.
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Rosette orbit
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Axisymmetric galaxies
If the gravitational potential ΦpR,φ, zq is symmetric about the z
axis, then there can be no torque about that axis. The component
of angular momentum about this axis is therefore conserved,

Lz “ R2 9φ “ constant.

Here, the dot indicates a derivative with respect to time.

The radial component of the acceleration of a star is

:R “ R 9φ2 ´
BΦ

BR
.

The first term on the RHS is the centripetal acceleration.

This equation can be written as

:R “ ´
BΦeff

BR
, Φeff “ ΦpR, zq ´

1

2
R2 9φ2 “ ΦpR, zq ´

L2
z

2R2
.

where Φeff is the effective potential.
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Axisymmetric galaxies

Multiply this equation by 9R and integrate,

9R :R “
1

2

d

dt
9R2 “ ´

dR

dt

BΦeff

BR
“
dΦeff

dt
.

Therefore,
1

2
9R2 ` Φeff “ constant.

The effective potential generally has the form shown on the next
slide. It rises sharply as RÑ 0 because of the centrifugal term
L2
z{2R

2. This prevents the star from approaching the centre to
closely. Instead, it is confined to orbit within an inner and outer
radial turning point, where 9R falls to zero.

The minimum of the effective potential occurs at R “ Rg, called
the guiding radius. The star moves back and forth about this
point as it circles the galaxy.
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Effective potential
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Radial motion
If the radial motion is not too large, we can expand the effective
potential in a Taylor series about the point Rg,

ΦeffpRq “ ΦeffpRgq `
x2

2

„

B2Φeff

BR2



R“Rg

` ¨ ¨ ¨ » LeffpRgq

where x “ R´Rg. The radial equation of motion now becomes

:x “ ´x

„

B2Φeff

BR2



R“Rg

“ ´κ2pRgqx.

where κ is a constant called the epicyclic frequency. If κ2 ą 0,
this is the equation of a harmonic oscillator. Its solution is

x “ X cospκt` ψq,

where X and ψ are constants. So the radial motion of the star is
sinusoidal about the guiding radius.
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Azimuthal motion
A star located at Rg, with no radial motion, would move in a
circular orbit at the circular velocity.

However, a star that is oscillating in radius must also oscillate in
azimuth φ. This is required to conserve angular momentum Lz,

Lz “ R2 9φ “ pRg ` xq
2 9φ » pR2

g ` 2Rgxq 9φ.

so
9φ “

Lz

R2
gp1` 2x{Rgq

» Ωgp1´ 2x{Rgq,

where Ωg “ Lz{R
2
g is the angular velocity of a circular orbit at

R “ Rg.

Substituting our solution for x and integrating, we find

φ “ Ωgt´ Y sinpκt` ψq{Rg ` φ0.

where Y “ 2ΩgX{κ and φ0 are constants.
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Epicycles

The combination of motion in
x and y “ Y sinpκt` ψq is
illustrated in the figure.

The star moves in a
retrograde elliptical path or
epicycle around the guiding
centre, while the guiding
centre moves with constant
speed in a circular path around
the centre of the galaxy.
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Rosette orbits

In general, the epicyclic frequency κ is not an exact multiple of the
orbital frequency Ωg. As a result, the orbit does not close. Instead
it resembles the figure on Slide 3. The path is called a rosette.
κ is related to the Oort constant B, as is proven in Eqn. 3.71 in
Sparke and Gallagher,

κ2pRgq “ ´4BΩg.

In the solar neighbourhood, B ă 0, so κ2 ą 0 and the orbit is
stable.

This is not true close to the event horizon of a black hole. If
R ă 3rS, where rS “ 2GM{c2 is the Schwarzschild radius, one
finds that κ2 ă 0 and the orbit decays exponentially.
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Stellar velocities
It is now easy to compute the velocities in the R and φ directions,
with the overall rotation removed, by differentiating the
expressions for x and y,

vx “ 9x “ Xκ cospκt` ψq

vy “ 9y “ ´Y κ sinpκt` ψq

If we now take the time average of the squares of these velocities
we find 〈

v2x
〉
“ X2κ2{2〈

v2y
〉
“ Y 2κ2{2

Looking at the definitions of X and Y , we see that

〈
v2y
〉
“

κ2

4Ω2
g

〈
v2x
〉
.
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Stellar velocities in the solar neighbourhood

One can show that
〈
v2y
〉
{
〈
v2x
〉
“ ´B{pA´Bq „ 2 for a flat

rotation curve. This is consistent with observations.
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Motion in the z direction
In the z direction, the potential is symmetric about z “ 0.
Because there is a component of force Fz pulling a star towards
the plane, the potential has a minimum at z “ 0.

To find an approximate equation of motion for the vertical position
z, we can expand the potential in a Taylor series about z “ 0. The
linear term is zero, by symmetry, so we have

ΦpR, zq “ ΦpR, 0q `
z2

2

„

B2ΦpR, zq

B2z



z“0

” φpR, 0q `
1

2
ν2pRqz2

We find the equation of motion in the z by equating the
acceleration to the force per unit mass,

:z “ ´
BΦ

Bz
“ ´ν2z.

This is the equation for a harmonic oscillator with frequency ν. We
conclude that the star oscillates above and below the plane, with
some amplitude Z (which could be zero) and period 2π{ν.
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