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Spherically-symmetric systems

If the gravitational potential ®(r, 8, ¢) is radially symmetric, we
have already seen that the angular momentum of any stellar orbit
L is conserved.

Since
L=7rxw,

it follows that the orbit is confined to a plane, perpendicular to L.

So the star moves in a plane, but not in an ellipse. Because the
mass is distributed, the gravitational force does not increase as
rapidly as r decreases, compared to a point mass.

As a result, the orbit generally does not close, but traces out a
rosette pattern. As it orbits the galaxy, the star oscillates in radius
between an inner turning point rni, and an outer one 7max.
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Rosette orbit

Fig 3.10 'Galaxies in the Universe' Sparke/Gallagher CUP 2007
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Axisymmetric galaxies

If the gravitational potential ®(R, ¢, z) is symmetric about the z
axis, then there can be no torque about that axis. The component
of angular momentum about this axis is therefore conserved,

L, = R2$ = constant.
Here, the dot indicates a derivative with respect to time.

The radial component of the acceleration of a star is
0o

The first term on the RHS is the centripetal acceleration.

This equation can be written as

D 5(I)eff - 1 22 Lg
R=- OR ' (I)eff_q)(Raz)_2R ¢ _q)(sz)_QRQ'

where @ is the effective potential.
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Axisymmetric galaxies

Multiply this equation by R and integrate,
_1d g AR 0Pefr  dPefr

Ri = 2dt dt OR dt

Therefore, )
ERQ + O = constant.

The effective potential generally has the form shown on the next
slide. It rises sharply as R — 0 because of the centrifugal term
L?/2R?. This prevents the star from approaching the centre to
closely. Instead, it is confined to orbit within an inner and outer
radial turning point, where R falls to zero.

The minimum of the effective potential occurs at R = Rg, called
the guiding radius. The star moves back and forth about this
point as it circles the galaxy.
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Effective potential
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Radial motion

If the radial motion is not too large, we can expand the effective
potential in a Taylor series about the point Rg,

22 [ 0%®,
q’efF(R) = cI’eff(Rg) + 5 [ ff] +ooee x> LefF(Rg)
R=R,

2 | OR?

where x = R — R,. The radial equation of motion now becomes

, O D 9
T=—x [ 72 ]R_Rg = —r"(Rg)x.

where k is a constant called the epicyclic frequency. If x? > 0,
this is the equation of a harmonic oscillator. Its solution is

x = X cos(kt + 1),

where X and v are constants. So the radial motion of the star is
sinusoidal about the guiding radius.
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Azimuthal motion

A star located at g, with no radial motion, would move in a
circular orbit at the circular velocity.

However, a star that is oscillating in radius must also oscillate in
azimuth ¢. This is required to conserve angular momentum L,

L. =R% = (Ry+2)%p ~ (R2 + 2Ry2)¢.
SO Lz

¢ = m ~ Qg(l — 2$/Rg),

where (g = Lz/Ré is the angular velocity of a circular orbit at
R = R,.

Substituting our solution for x and integrating, we find
¢ = Qgt — Y sin(kt + ) /Rg + 0.

where Y = 2Q,X /k and ¢¢ are constants.
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Epicycles

The combination of motion in
x and y = Y sin(kt + 1) is

illustrated in the figure. 20X /ic

The star moves in a
retrograde elliptical path or
epicycle around the guiding
centre, while the guiding
centre moves with constant
speed in a circular path around
the centre of the galaxy.

X

Fig 3.9 'Galaxies in the Universe' Sparke/Gallagher CUP 2007
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Rosette orbits

In general, the epicyclic frequency & is not an exact multiple of the
orbital frequency €2;. As a result, the orbit does not close. Instead
it resembles the figure on Slide 3. The path is called a rosette.

k is related to the Oort constant B, as is proven in Eqn. 3.71 in
Sparke and Gallagher,

K*(Rg) = —4B%Q.

In the solar neighbourhood, B < 0, so k2 > 0 and the orbit is
stable.

This is not true close to the event horizon of a black hole. If
R < 3rg, where 75 = 2GM /c? is the Schwarzschild radius, one
finds that x2 < 0 and the orbit decays exponentially.
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Stellar velocities
It is now easy to compute the velocities in the R and ¢ directions,
with the overall rotation removed, by differentiating the
expressions for x and y,

Il
5.

Uy = Xk cos(kt + 1)

vy =y = —Yksin(kt + )

If we now take the time average of the squares of these velocities
we find

(2 = X222
<v§> = Y?k?/2

Looking at the definitions of X and Y, we see that
2
2 K 2
() = oo ().
g
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Stellar velocities in the solar neighbourhood
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One can show that (v;) /(v2) = —B/(A — B) ~ 2 for a flat
rotation curve. This is consistent with observations.

12 /13



Motion in the z direction
In the z direction, the potential is symmetric about z = 0.
Because there is a component of force F, pulling a star towards
the plane, the potential has a minimum at z = 0.

To find an approximate equation of motion for the vertical position
z, we can expand the potential in a Taylor series about z = 0. The
linear term is zero, by symmetry, so we have

?®(R, 2)
022 =0

2
1
®(R,z) = D(R,0) + % [ #(R,0) + §V2(R)z2
We find the equation of motion in the z by equating the
acceleration to the force per unit mass,
0P _ 9

— = —V72z.
0z

This is the equation for a harmonic oscillator with frequency v. We
conclude that the star oscillates above and below the plane, with
some amplitude Z (which could be zero) and period 27 /v.

z =
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