

Spherically-symmetric systems

If the gravitational potential $\Phi(r, \theta, \phi)$ is radially symmetric, we have already seen that the angular momentum of any stellar orbit L is conserved.

SInce

$$
\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{v}
$$

it follows that the orbit is confined to a plane, perpendicular to \boldsymbol{L}.
So the star moves in a plane, but not in an ellipse. Because the mass is distributed, the gravitational force does not increase as rapidly as r decreases, compared to a point mass.

As a result, the orbit generally does not close, but traces out a rosette pattern. As it orbits the galaxy, the star oscillates in radius between an inner turning point $r_{\text {min }}$ and an outer one $r_{\text {max }}$.

Rosette orbit

Fig 3.10 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Axisymmetric galaxies

If the gravitational potential $\Phi(R, \phi, z)$ is symmetric about the z axis, then there can be no torque about that axis. The component of angular momentum about this axis is therefore conserved,

$$
L_{z}=R^{2} \dot{\phi}=\text { constant }
$$

Here, the dot indicates a derivative with respect to time.
The radial component of the acceleration of a star is

$$
\ddot{R}=R \dot{\phi}^{2}-\frac{\partial \Phi}{\partial R} .
$$

The first term on the RHS is the centripetal acceleration.
This equation can be written as

$$
\ddot{R}=-\frac{\partial \Phi_{\text {eff }}}{\partial R}, \quad \Phi_{\text {eff }}=\Phi(R, z)-\frac{1}{2} R^{2} \dot{\phi}^{2}=\Phi(R, z)-\frac{L_{z}^{2}}{2 R^{2}} .
$$

where $\Phi_{\text {eff }}$ is the effective potential.

Axisymmetric galaxies

Multiply this equation by \dot{R} and integrate,

$$
\dot{R} \ddot{R}=\frac{1}{2} \frac{d}{d t} \dot{R}^{2}=-\frac{d R}{d t} \frac{\partial \Phi_{\text {eff }}}{\partial R}=\frac{d \Phi_{\text {eff }}}{d t} .
$$

Therefore,

$$
\frac{1}{2} \dot{R}^{2}+\Phi_{\text {eff }}=\text { constant } .
$$

The effective potential generally has the form shown on the next slide. It rises sharply as $R \rightarrow 0$ because of the centrifugal term $L_{z}^{2} / 2 R^{2}$. This prevents the star from approaching the centre to closely. Instead, it is confined to orbit within an inner and outer radial turning point, where \dot{R} falls to zero.

The minimum of the effective potential occurs at $R=R_{\mathrm{g}}$, called the guiding radius. The star moves back and forth about this point as it circles the galaxy.

Effective potential

Fig 3.8 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Radial motion

If the radial motion is not too large, we can expand the effective potential in a Taylor series about the point R_{g},

$$
\Phi_{\mathrm{eff}}(R)=\Phi_{\mathrm{eff}}\left(R_{\mathrm{g}}\right)+\frac{x^{2}}{2}\left[\frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial R^{2}}\right]_{R=R_{\mathrm{g}}}+\cdots \simeq L_{\mathrm{eff}}\left(R_{\mathrm{g}}\right)
$$

where $x=R-R_{g}$. The radial equation of motion now becomes

$$
\ddot{x}=-x\left[\frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial R^{2}}\right]_{R=R_{\mathrm{g}}}=-\kappa^{2}\left(R_{\mathrm{g}}\right) x .
$$

where κ is a constant called the epicyclic frequency. If $\kappa^{2}>0$, this is the equation of a harmonic oscillator. Its solution is

$$
x=X \cos (\kappa t+\psi),
$$

where X and ψ are constants. So the radial motion of the star is sinusoidal about the guiding radius.

Azimuthal motion

A star located at R_{g}, with no radial motion, would move in a circular orbit at the circular velocity.

However, a star that is oscillating in radius must also oscillate in azimuth ϕ. This is required to conserve angular momentum L_{z},

$$
L_{z}=R^{2} \dot{\phi}=\left(R_{g}+x\right)^{2} \dot{\phi} \simeq\left(R_{g}^{2}+2 R_{g} x\right) \dot{\phi}
$$

so

$$
\dot{\phi}=\frac{L_{z}}{R_{g}^{2}\left(1+2 x / R_{g}\right)} \simeq \Omega_{g}\left(1-2 x / R_{g}\right)
$$

where $\Omega_{\mathrm{g}}=L_{z} / R_{\mathrm{g}}^{2}$ is the angular velocity of a circular orbit at $R=R_{\mathrm{g}}$.

Substituting our solution for x and integrating, we find

$$
\phi=\Omega_{g} t-Y \sin (\kappa t+\psi) / R_{\mathrm{g}}+\phi_{0}
$$

where $Y=2 \Omega_{g} X / \kappa$ and ϕ_{0} are constants.

Epicycles

The combination of motion in x and $y=Y \sin (\kappa t+\psi)$ is illustrated in the figure.

The star moves in a retrograde elliptical path or epicycle around the guiding centre, while the guiding centre moves with constant speed in a circular path around the centre of the galaxy.

Fig 3.9'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Rosette orbits

In general, the epicyclic frequency κ is not an exact multiple of the orbital frequency Ω_{g}. As a result, the orbit does not close. Instead it resembles the figure on Slide 3. The path is called a rosette. κ is related to the Oort constant B, as is proven in Eqn. 3.71 in Sparke and Gallagher,

$$
\kappa^{2}\left(R_{\mathrm{g}}\right)=-4 B \Omega_{\mathrm{g}}
$$

In the solar neighbourhood, $B<0$, so $\kappa^{2}>0$ and the orbit is stable.

This is not true close to the event horizon of a black hole. If $R<3 r_{\mathrm{S}}$, where $r_{\mathrm{S}}=2 G M / c^{2}$ is the Schwarzschild radius, one finds that $\kappa^{2}<0$ and the orbit decays exponentially.

Stellar velocities

It is now easy to compute the velocities in the R and ϕ directions, with the overall rotation removed, by differentiating the expressions for x and y,

$$
\begin{aligned}
& v_{x}=\dot{x}=X \kappa \cos (\kappa t+\psi) \\
& v_{y}=\dot{y}=-Y \kappa \sin (\kappa t+\psi)
\end{aligned}
$$

If we now take the time average of the squares of these velocities we find

$$
\begin{aligned}
& \left\langle v_{x}^{2}\right\rangle=X^{2} \kappa^{2} / 2 \\
& \left\langle v_{y}^{2}\right\rangle=Y^{2} \kappa^{2} / 2
\end{aligned}
$$

Looking at the definitions of X and Y, we see that

$$
\left\langle v_{y}^{2}\right\rangle=\frac{\kappa^{2}}{4 \Omega_{g}^{2}}\left\langle v_{x}^{2}\right\rangle
$$

Stellar velocities in the solar neighbourhood

Fig 3.11 'Galaxies in the Universe' Sparke/Gallagher CUP 2007
One can show that $\left\langle v_{y}^{2}\right\rangle /\left\langle v_{x}^{2}\right\rangle=-B /(A-B) \sim 2$ for a flat rotation curve. This is consistent with observations.

Motion in the z direction

In the z direction, the potential is symmetric about $z=0$.
Because there is a component of force F_{z} pulling a star towards the plane, the potential has a minimum at $z=0$.

To find an approximate equation of motion for the vertical position z, we can expand the potential in a Taylor series about $z=0$. The linear term is zero, by symmetry, so we have

$$
\Phi(R, z)=\Phi(R, 0)+\frac{z^{2}}{2}\left[\frac{\partial^{2} \Phi(R, z)}{\partial^{2} z}\right]_{z=0} \equiv \phi(R, 0)+\frac{1}{2} \nu^{2}(R) z^{2}
$$

We find the equation of motion in the z by equating the acceleration to the force per unit mass,

$$
\ddot{z}=-\frac{\partial \Phi}{\partial z}=-\nu^{2} z .
$$

This is the equation for a harmonic oscillator with frequency ν. We conclude that the star oscillates above and below the plane, with some amplitude Z (which could be zero) and period $2 \pi / \nu$.

