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Close encounters

So far we have assumed that stars move on orbits within a smooth
gravitational potential, and have ignored the fact that the
potential actually has deep minima located at each star. If a star
has a close encounter with another, both orbits will be changed.

A strong encounter is one that significantly changes the velocity of
the star. This will happen if the change in potential energy, at
closest approach, is greater than the initial kinetic energy,

Gm2

r
Á
mV 2

2

which is equivalent to r À rs where

rs “
2Gm

V 2

is called the strong-encounter radius.
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Close encounters

The cross section for strong encounters is then πr2s and the typical
time between such encounters is the reciprocal of the collision rate,

ts “
1

nV πr2s
“

V 3

4πG2m2n
.

where n is the average number density of stars.

In the vicinity of the Sun, n » 0.1 pc´3 and stars have random
speeds V » 30 km/s. For m “ 0.5Md we find that rs » 1 AU and
ts » 1015 yr.

This time is much longer than the age of the Universe
(„ 1.4ˆ 1010 yr), so we do not expect close stellar encounters to
be a significant factor in the evolution of the galaxy.
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Weak encounters
Another possibility is weak encounters that occur when stars pass
each other at a greater distance.

The situation is shown in Fig. 3.5. Before the point of closest
approach, the star feels a force in the forward (parallel) direction
and the perpendicular direction. After this the parallel component
of the force reverses, so there is no net change to that component.

The perpendicular acceleration of the star is

dVK
dt

“
Gm

b2 ` V 2t2
¨

b

pb2 ` V 2t2q1{2
“

Gmb

pb2 ` V 2t2q3{2
.
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Weak encounters

Integrating this over time gives the change in the perpendicular
component of velocity,

∆VK “

ż 8

´8

Gmb

pb2 ` V 2t2q3{2
dt “

2Gm

bV
.

The resulting angular deflection is α “ ∆V {V “ 2GM{bV 2.

This result applies to a single encounter, but over time the star will
have many weak encounters with other stars, with various values of
the impact parameter b and will result in deflections in random
perpendicular directions.

To evaluate the results of this we need to add the squares of the
changes in perpendicular velocity, and integrate over all possible
impact parameters.
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Weak encounters

The rate at which stars are encountered with impact parameter in
the range rb, b` dbs is nV p2πbqdb, so the rate of change of〈
∆V 2

K

〉
is

d

dt

〈
∆V 2

K

〉
“

ż bmax

bmin

nV

ˆ

2Gm

bV

˙2

2πbdb “
8πG2m2n

V
ln

ˆ

bmax

bmin

˙

.

Eventually, the perpendicular component of velocity becomes
comparable to the initial velocity and all memory of the initial orbit
has been lost. The time required for this to happen is called the
relaxation time and is given by

trelax “
V 2

d
〈
∆V 2

K

〉
{dt

“
V 3

8πG2m2n ln Λ
“

ts
2 ln Λ

.

where Λ “ bmax{bmin.
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Relaxation time

Typically one takes bmax to be the size of the of the entire stellar
system and bmin “ rs. (The exact values don’t matter much since
this is inside a logarithm.) For a galaxy, one finds ln Λ „ 20.

We see that the relaxation time for a galaxy is very large, of order
1013 yr, which is still much longer than the age of the Universe.

We are therefore justified in ignoring encounters, at least for a
large system like a galaxy.

Further insight can be gained by applying the virial theorem.
Suppose that the stellar system is spherical with radius R. Then

n “ 3N{4πR3

where N is the total number of stars.
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Relaxation time

From the virial theorem,

2K ` U » NmV 2 ´N2Gm
2

R
“ 0

so V 2 » GNm{R. Putting this into the equation for ts we get

ts “
V 3R3

3G2m2N
»
NR

3V
“
N

3
tcr,

where tcr “ R{V is called the crossing time, the time taken by a
typical star to cross from one side of the galaxy to the other. We
see that the strong encounter time is proportional to the number
of stars in the system.
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Relaxation time

The ratio

Λ “
R

rs
“
V 2R

2Gm
»
N

2
,

so the relaxation time can now be written as

trelax »
N

6 lnpN{2q
tcr.

For a typical galaxy with N » 1011 stars, relaxation requires „ 109

crossing times.

For a globular cluster with 106 stars, relaxation will occur in
„ 104tcr » 1010 yr. Relaxation can be important for those
systems, particularly in the dense core.
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Effects of relaxation

Encounters exchange energy and momentum between stars.
Eventually they will approach statistical equilibrium where the
velocity distribution is given by the Maxwell-Boltzmann equation,

fpvq 9 v2 exp

ˆ

´
E

kT

˙

“ v2 exp

"

´
1

kT

„

mΦpxq `
1

2
mv2

*

.

where T is the kinetic “temperature” of the system.

As this happens, some stars will pick up sufficient energy to escape.

The average kinetic energy that a star needs to escape is〈
1

2
mv2e

〉
“ ´

1

N

ÿ

α

mαΦpxαq “ ´
2

N
U “

4

N
K “ 4ˆ

3

2
kT,

where the last step follows from the virial theorem. Thus, escape
requires only four times the mean kinetic energy.
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Evaporation

The fraction of stars that can escape can be found by integrating
the velocity distribution

ż 8

?
12kT {m

e´mv
2{2kT v2dv

N
ż 8

0
e´mv

2{2kT v2dv “
Γp3{2, 6q

Γp3{2q
»

1

135.4
.

These stars are replenished after a time t „ trelax, so a substantial
fraction of stars will be lost over an evaporation time
tevap » 136 trelax.

For open clusters in the Milky Way, tevap is a few Gyr. In fact
these clusters are disrupted sooner than this by tidal forces from
spiral arms and molecular clouds.

Encounters also lead to mass segregation in star clusters. Massive
stars give up energy, to lower-mass stars, and sink toward the
centre of the cluster. Similarly, binary stars sink towards the centre.
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Mass segregation in the Pleiades

Radial distribution of stars, green: M ąMd, red: M ăMd.
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