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Newtonian gravity

Except near a massive black hole, the motion of stars in the galaxy
is described well by Newton’s laws of motion and gravity.

Suppose that we have a number of stars whose masses are mα,
(α “ 1, 2, ¨ ¨ ¨ ) located at positions xα. According to Newton, the
star at position xα feels a force per unit mass

F α “ ´
ÿ

β‰α

Gmβ

|xα ´ xβ|3
pxα ´ xβq.

This can be written more simply as

F αpxq “ ´∇Φpxq

where
Φpxq “ ´

ÿ

α

Gmα

|x´ xα|
, x ‰ xα

is the gravitational potential.
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Potential

Since the number of stars in the galaxy is very large, we can
approximate the sum by an integral over the mass density ρpxq,
averaged over a scale comparable to the separation between stars.

Φpxq » ´

ż

Gρpx1q

|x´ x1|
d3x1.

The potential satisfies a differential equation. Apply the Laplacian
operator ∇2 to both sides,

∇2Φpxq “ ´G

ż

ρpx1q∇2

ˆ

1

|x´ x1|

˙

d3x1.

The Laplacian of the quantity in parenthesis is equal to zero if
x ‰ x1, so the only contribution to the integral comes when
x1 “ x.
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Potential

We may therefore replace ρpx1q with ρpxq and take it outside the
integral. This gives

∇2Φpxq “ ´Gρpxq

ż

∇2

ˆ

1

|x´ x1|

˙

d3x1.

The integral can be done using Gauss’s theorem and has the value
´4π. Thus the potential satisfies

∇2Φpxq “ 4πGρpxq

which is Poisson’s equation.

Often, solving Poisson’s equation is the simplest way to find the
potential associated with a symmetric mass distribution.
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Newton’s theorems

Newton proved two very useful theorems concerning the force
produced by spherically symmetric mass distributions.

§ The gravitational force inside a spherical shell of uniform
density is zero.

§ Outside any spherically symmetric object, the gravitational
force is the same as if all its mass had been concentrated at
the centre.

Geometric proofs of these theorems were given by Newton and can
be found in Sparke and Gallagher. Here we give an alternative
proof.
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Newton’s theorems

By symmetry, the potential can depend only on the distance r
from the centre of the shell. Inside and outside the shell, ρ “ 0, so
Poisson’s equation becomes

1

r2
d

dr
r2
dΦ

dr
“ 0.

Integrating this equation gives

Φprq “ A`
B

r
,

where A and B are constants.

The second term predicts an infinite force at r “ 0, but we know
that the force must vanish there because it is a vector and the
problem has spherical symmetry.

Therefore, inside the shell we have φ “ A and F “ ´∇Φ “ 0.
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Newton’s theorems
Outside the shell, we again have

Φprq “ A`
B

r
,

but now the second term can be nonzero.

From the definition of the potential, we see that In the limit as
r Ñ8, tthe potential must have the limiting form

Φprq “ ´
GM

r
, r Ñ8.

(The shell “looks” like a point mass when seen from far away).
Therefore, B “ ´GM and the force per unit mass

F “ ´∇Φ “ ´
GM

r3
r

is the same as for a point mass M located at the centre.
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Spherically symmetric mass distribution

From Newton’s theorems we see that the force at distance r
depends only on the mass Mprq interior to r,

F “ ´
GMprq

r3
r.

Therefore, the potential must have the form

Φprq “ ´
GMprq

r
´ 4πG

ż 8

r
ρpr1qr1dr1.

A star moving in a circular orbit with speed V has acceleration
V 2{r, directed inwards. Therefore, the circular velocity is given by

V 2 “
GMprq

r
.
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Energy

As a star moves with velocity v through a static potential Φ, the
potential at the star’s location changes according to

dΦ

dt
“ v ¨∇Φpxq

The acceleration of a the star is given by Newton’s law of motion,

dv

dt
“ ´∇Φ

Substituting this in the previous equation we find

dΦ

dt
` v ¨

dv

dt
“ 0

Therefore,
d

dt

ˆ

Φ`
1

2
v2
˙

“ 0
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Energy

The quantity in parenthesis is the total energy, per unit mass, of
the star

E “
1

2
v2 ` Φpxq

We see that it is conserved (unchanged) as the star moves in its
orbit.

This is true as long as the potential at any given point does not
change with time. Generally this is a good assumption, unless the
galaxy is collapsing, or colliding with another galaxy.

Far from the galaxy, the potential drops to zero. It follows that a
star can only escape from the galaxy if its total energy is positive.

To do that it needs to move faster than the local escape speed ve,
where

v2e “ ´2Φpxq.
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Angular momentum

The angular momentum, per unit mass, of the star is L “ xˆ v.
Its time derivative is

dL

dt
“

d

dt
pxˆ vq “ v ˆ v ` xˆ

dv

dt
“ ´xˆ∇Φ.

If the system is spherically symmetric, this is zero, so the angular
momentum of the star is conserved.

If the system has axial symmetry, only the component Lz along the
symmetry axis is conserved.

The total angular moment of all the stars in an isolated system is
always conserved.
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Potential energy

The total potential energy of the system can be found by adding
the potential energy of all pairs of stars,

U “ ´
1

2

ÿ

α,β‰α

Gmαmβ

|xα ´ xβ|
“

1

2

ÿ

α

mαΦpxαq.

The factor of 1/2 is needed because the sum counts each pair
twice.

For a continuous distribution, this becomes

U “
1

2

ż

ρΦdV.
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The virial theorem
Consider a cluster of stars with masses mα and positions xα. Write
down the equation of motion and take the dot product with xα,

ÿ

α

d

dt
pmαvαq ¨ xα “ ´

ÿ

α,β‰α

Gmαmβ

|xα ´ xβ|3
pxα ´ xβq ¨ xα.

Now exchange α and β,

ÿ

β

d

dt
pmβvβq ¨ xβ “ ´

ÿ

β,α‰β

Gmβmα

|xβ ´ xα|3
pxβ ´ xαq ¨ xβ.

The left hand sides are the same. If we add the two equations and
divide by two we get

ÿ

α

d

dt
pmαvαq ¨ xα “ ´

1

2

ÿ

α,β‰α

Gmαmβ

|xα ´ xβ|3
pxα ´ xβq ¨ pxα ´ xβq,

“ ´
1

2

ÿ

α,β‰α

Gmαmβ

|xα ´ xβ|
“ U.
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The virial theorem

The RHS is the potential energy U . The LHS can be written as

ÿ

α

d

dt
pmαvαq ¨ xα “

1

2

d2

dt2

ÿ

α

mαxα ¨ xα ´
ÿ

α

mαvα ¨ vα,

“
1

2

d2I

dt2
´ 2K,

where I “
ř

αmαxα ¨ xα is the moment of inertia of the system
and K is its total kinetic energy.

If the overall distribution of mass does not change significantly as
the stars move in thier orbits, the moment of inertia is nearly
constant and its time derivative is close to zero. In that case our
equation becomes

2K ` U “ 0.

which is called the virial theorem. (Sparke and Gallagher prove a
more general version which includes external forces.)
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