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Abstract. The discrete Fourier transforms (DFT) is ubiquitous in spectral anal-
ysis as a result of the introduction of the Fast Fourier transform by Cooley and
Tukey in 1965. In 1987, E. T. Jaynes derived the DFT using Bayesian Probabil-
ity Theory and provided surprising new insights into its role in spectral analysis.
From this new perspective the spectral resolution achievable is directly dependent
on the signal to noise ratio and can be orders of magnitude better than that of a
conventional Fourier power spectrum or periodogram. This was the starting point
for an ongoing Bayesian revolution in spectral analysis which is reviewed in this
paper, with examples taken from physics and astronomy. The revolution is based
on a viewpoint of Bayesian Inference as extended logic.

1. Introduction

Science is all about identifying and understanding organized structures or pat-
terns in nature. In this regard periodic patterns have proven especially important.
Nowhere is this more evident than in the field of astronomy. Periodic phenomena
allow us to determine fundamental properties like mass and distance, enable us to
probe the interior of star through the new techniques of stellar seismology, detect
new planets and discover exotic states of matter like neutron stars and black holes.
Clearly any fundamental advance in our ability to detect periodic phenomena will
have profound consequences in our ability to unlock nature’s secrets. The purpose
of this article is to describe such an advance and provide illustrations of its power
through several examples in physics and astronomy.

This advance is based on a theory of extended logic called Bayesian probability
theory (BPT) or Bayesian Inference. It is not the purpose of this paper to present
the foundations of Bayesian inference. The reader is referred to the work of E. T.
Jaynes 1. For a brief introduction to the subject see review articles by Loredo [19]

†Email: gregory@physics.ubc.ca
1For example, see “Probability Theory: The Logic of Science”, available at

http://bayes.wustl.edu/.
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[20]. For a 4 page tutorial on how to do Bayesian inference see section 2 of Gregory
and Loredo [11]. A more thorough pedagogical account is given in Devinder Sivia’s
introductory text [27].

For the purpose of this discussion scientific inference is defined as a method
for assessing the plausibility of one or more competing models (hypotheses) to ex-
plain a class of phenomena, and estimating the model parameters. The hypothesis
space can be either discrete or continuous as will be illustrated in the examples
that follow. Bayesian inference differs from conventional frequentist statistical in-
ference in the definition of probability that is used. 2 This important difference
allows Bayesian inference to bridge in a continuous way to deductive logic. De-
ductive logic is based on axiomatic knowledge. However, in scientific inference our
reasoning is based on incomplete information. There are always more experiments
that can be done to test the predictions of a particular theory or hypothesis and a
variety of errors can be introduced in any measurement operation. Our conclusions
are at best probabilities. The role of extended logic is to provide a well defined
procedure for encoding our current state of knowledge, about some hypothesis
space of interest, into a probability distribution. It is common practice to repre-
sent a probability by a real number in the range 0 to 1, with the end points 0 and
1 standing for absolutely false and absolutely true, respectively. In this context
deductive logic can be shown to be a special case of BPT in the idealized limit of
complete information where the probability is either 0 or 1.

The power of present day computers readily permits testing of the efficacy of
different approaches to scientific inference with well understood simulated data
sets, but ultimately we are interested in their success when applied to real scien-
tific problems. The rest of this paper will focus on recent demonstrations of the
capabilities of Bayesian inference in the arena of spectral analysis starting with
E. T. Jaynes’s new insights.

2. New Insights on the Periodogram from Probability Theory

Arthur Schuster introduced the periodogram in 1905, as a means for detecting a
periodicity and estimating its frequency. If the data are evenly spaced, the peri-
odogram is determined by the discrete Fourier transforms (DFT), thus justifying
the use of the DFT for such detection and measurement problems. In 1965 [8]
Cooley and Tukey introduced the Fast discrete Fourier transform (FFT).

The Schuster periodogram was introduced largely for intuitive reasons, but in
1987 Jaynes provided a formal justification by applying the principles of Bayesian
inference to the following [17]. Suppose we are analyzing data consisting of samples
of a continuous function contaminated with additive independent Gaussian noise

2In frequentist statistical inference the probability, p(A) = long-run relative frequency with
which outcome A occurs in identical repeats of an experiment. “A” restricted to propositions
about random variables.

In Bayesian inference, p(H |D,I) = a real number measure of the plausibility of a proposi-
tion/hypothesis H , given the truth of the information represented by propositions D (new data)
and I (prior information). “H” can be any logical proposition, i.e. not restricted to propositions
about random variables.
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with a variance of σ2. Jaynes showed that, presuming the possible periodic signal
is sinusoidal (but with unknown amplitude, frequency, and phase), the Schuster
periodogram exhausts all the information in the data relevant to assessing the
possibility that a signal is present, and to estimating the frequency and amplitude
of such a signal. The periodogram is essentially the squared magnitude of the DFT
and can be defined as

periodogram = C(fn) =
1
N

∣∣∣∣∣
N∑

k=1

dk ei2πn∆fk∆t

∣∣∣∣∣

2

=
1
N

|FFT |2 . (1)

In a FFT the frequency interval, ∆f = 1/T , where T is the duration of the data
set consisting of N samples with a sample interval ∆t. The quantity C(fn) is
indeed fundamental to spectral analysis but not because it is itself a satisfactory
spectrum estimator. Jaynes showed that the probability for the frequency of a
periodic sinusoidal signal is given approximately 3 by

p(fn | D, I) ∝ exp
{

C(fn)
σ2

}
(2)

Thus the proper algorithm to convert C(fn) to p(fn | D, I) involves first dividing
C(fn) by the noise variance and then exponentiating. This naturally suppresses
spurious ripples at the base of the periodogram, usually accomplished with linear
smoothing; but does it by attenuation rather than smearing, and therefore does
not sacrifice any precision. The Bayesian nonlinear processing of C(fn) also yields,
when the data give evidence for them, arbitrarily sharp spectral peaks. Since the
peak in p(fn | D, I) can be much sharper than the peak in C(fn), it is necessary
to zero pad the FFT to obtain a sufficient density of points in C(fn) for use in
equation (2) to accurately define a peak in p(fn | DI).

Figure 1 provides a demonstration of these properties for a simulated data set
consisting of a single sine wave plus additive Gaussian noise given by equation (3).

y = A cos 2πft + Gaussian noise (mean = 0, σ = 1), (3)

where A = 1, f = 0.1 Hz. The upper panel shows 64 simulated data points com-
puted from equation (3), with one σ error bars. The middle panel is the Fourier
power spectral density or periodogram, computed for this data according equa-
tion (1). 4 The sinusoidal signal is clearly indicated by the prominent peak. The
signal to noise ratio (S/N), defined as the ratio of the RMS signal amplitude to
the noise σ, was 0.7 in the above simulation. If we repeated the simulation with a
larger S/N ratio, the main peak would increase in relation to the noise peaks and

3Bretthorst [6] derives the exact result for the more general case of nonuniformily sampled
data which involves an analogous nonlinear transformation of the Lomb-Scargle periodogram [18]
[23] [24]. Bretthorst [7] also shows how to generalize the Lomb-Scargle periodogram for the case
of a nonstationary sinusoid.

4The 64 points were zero padded to provide a total of 512 points for the FFT.
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we would start to notice side lobes emerging associated with the finite duration of
the data set (rectangular window function). However, a well known property of the
periodogram is that the width of any spectral peak depends only on the duration
of the data set and not on the signal to noise level. Various methods have been
used to determine the accuracy to which the peak frequency can be determined,
but, as we see below, the Bayesian posterior probability for the signal frequency
provides this information directly.

The lower panel of figure 1 shows the Bayesian probability density for the
period of the signal, derived from equation (2). As the figure demonstrates the
spurious noise feature are suppressed and the width of the spectral peak is much
narrower than the peak in the periodogram. In a Bayesian analysis the width of
spectral peak, which reflects the accuracy of the frequency estimate, is determined
by the duration of the data, the S/N ratio and the number of data points. More
precisely the standard deviation of the spectral peak, δf , for a S/N > 1, is given
by

δf ≈ (1.6
S
N

T
√

N )−1 Hz, (4)

where T = the data duration in s, N = the number of data points in T .
Equation (2) assumes that the noise variance is a known quantity. In some

situations the noise is not well understood, i.e. our state of knowledge is less
certain. Even if the measurement apparatus noise is well understood, the data
may contain a greater complexity of phenomena than the current signal model
incorporates. In such cases equation (2) is no longer relevant, but again, Bayesian
inference can readily handle this situation [6] by treating the noise variance as an
unknown quantity, or by making use of whatever prior information we have about
the noise. In this case the analysis treats everything that cannot be explained by
the signal model as noise, leading to the most conservative estimates.

A corollary of Jaynes’s analysis is that for any other problem (e.g., non-
sinusoidal light curve, non Gaussian noise, or nonuniform sampling) use of the
FFT is not optimal; more information can be extracted from the data if we use
more sophisticated statistics. Jaynes made this point himself, and it has been
amply demonstrated in the work of Bretthorst [1], who has applied similar meth-
ods to signal detection and estimation problems with non sinusoidal models with
Gaussian noise probabilities. In the following sections we will consider two general
classes of spectral problems: (a) those for which we have strong prior information
of the signal model, and (b) those for which we have no specific prior information
about the signal.

3. Spectral Analysis with Strong Prior Information of the Signal Model

Larry Bretthorst [1] [2] [3] [4] [5] extended Jaynes’s work to more complex signal
models with additive Gaussian noise and revolutionized the analysis of Nuclear
Magnetic Resonance (NMR) signals. In NMR free-induction decay, the signal con-
sists of a sum of exponentially decaying sinusoids of different frequency and decay
rate. The upper two panels of figure 2 illustrate the quadrature channel mea-
surements in a NMR free-induction decay experiment. In this example the S/N
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Figure 1. Comparison of conventional (middle panel) and Bayesian analysis (lower panel) of a
simulated time series (upper panel).

ratio is very high. The middle panel illustrates the conventional absorption spec-
trum based on a FFT of the data, which shows three obvious spectral peaks with
an indication of further structure in the peaks. The lower panel illustrates Bret-
thorst’s Bayesian analysis of this NMR data which clearly isolates six separate
peaks. The resolution is so good that the 6 peaks appear as delta functions in this
figure. A similar improvement was obtained in the estimation of the decay rates.
The Bayesian analysis provides much more reliable and informative results when
prior knowledge of the shape of the signal and noise statistics are incorporated.
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Bayesian Power Spectral Density

Absorption Spectrum

Figure 2. Comparison of conventional analysis (middle panel) and Bayesian analysis (lower
panel) of the two channel NMR time series (upper two panels). (Ref: G. L. Bretthorst, “Bayesian
Spectrum Analysis and Parameter Estimation”, Springer Verlag, 1988)

Varian Corporation now offers an expert analysis package with their new NMR
machines based on Bretthorst’s Bayesian algorithm. His work is very relevant to
many current problems in science, e.g., the detection of extrasolar planets and
stellar seismology.

4. Spectral Analysis with No Specific Prior Information of the Signal

In this case we are addressing the detection and measurement of a periodic signal
in a time series when we have no specific prior knowledge of the existence of such
a signal or of its characteristics, including its shape. For example, an extraterres-
trial civilization might be transmitting a repeating pattern of information either



A BAYESIAN REVOLUTION IN SPECTRAL ANALYSIS 7

intentionally or unintentionally. What scheme could we use to optimally detect
such a signal after we have made our best guess at a suitable wavelength of ob-
servation? Bayesian inference provides a well defined procedure for solving any
inference problem including questions of this kind. However, to proceed with the
calculation it is necessary to assume a model or family of models which is capable
of approximating a periodic signal of arbitrary shape. A very useful Bayesian so-
lution to the problem of detecting a signal of unknown shape was worked out by
the author in collaboration with Tom Loredo of Cornell University [11] [12] [13] in
the case of event arrival time data.

We used a family of histogram (piecewise constant) signal models, with each
member of the family having a different number of bins m, with m ranging from
2 to some upper limit, typically 12. The Bayesian calculation automatically in-
corporates a quantified Occam’s penalty, penalizing models with larger number of
bins for their greater complexity. The calculation thus balances model simplicity
with goodness-of-fit, allowing us to determine both whether there is evidence for
a periodic signal, and the optimum number of bins for describing the structure in
the data. A remarkable feature of this particular signal model is that it leads to
a computationally tractable algorithm, because many of the required calculations
can be performed analytically. Further research is underway to investigate com-
putationally tractable ways of incorporating additional desirable features into the
signal model, such as, variable bin widths to allow for a reduction in the number
of bins needed to describe certain types of signals.

The Gregory-Loredo (GL) algorithm was motivated by the problem of detecting
astronomical X-ray pulsars where the data consists of the arrival times of individual
X-ray photons, some or all of which are background events, and the appropriate
sampling distribution is the Poisson distribution. More recently the author has
published [14] a Bayesian solution to the unknown signal detection problem for
the Gaussian noise case.

The solution in the Poisson case yields a result that is intuitively very satisfying.
The probability for the family of periodic models can be shown to be approximately
inversely proportional to the entropy [11] of any significant organized periodic
structure found in the search parameter space. What structure is significant is
determined through built in quantified Occam’s penalties in the calculation. Of
course structure with a high degree of organization corresponds to a state of low
entropy. In the absence of knowledge about the shape of the signal the method
identifies the most organized significant periodic structure in the model parameter
space.

Some of the capabilities of the GL method are illustrated in the following two
examples, one taken from X-ray astronomy and the other from radio astronomy.

4.1. X-RAY ASTRONOMY EXAMPLE

In 1984 Seward et al. [25] discovered a 50 ms X-ray pulsar at the center of a
previously known radio supernova remnant, SNR 0540-693, located in the Large
Magellanic Cloud. The initial detection of X-ray pulsations was from an FFT
periodogram analysis of the data obtained from the Einstein Observatory. The
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Figure 3. Close up of largest frequency peak comparing the Gregory-Loredo probability density
for f (solid curve) to the Epoch Folding 〈χ2〉φ statistic (diamonds). The 〈χ2〉φ statistic versus
trial frequency results from epoch folding analysis using m = 5 bins (Ref: Gregory and Loredo,
Ap. J., 473, 1059)

true pulsar signal turned out to be the second highest peak in the initial FFT.
Confidence in the reality of the signal was established from FFT runs on other
data sets. The pulsar was re-observed with the ROSAT Observatory by Seward and
colleagues, but this time an FFT search failed to detect the pulsar. In reference [13]
we used the GL method on a sample ROSAT data set of 3305 photons provided by
F. Seward. The data spanned an interval of 116,341 s and contained many gaps.

In the first instance we incorporated the prior information on the period, period
derivative and their uncertainties, obtained from the earlier detection with the
Einstein Observatory data. The GL method provides a calculation of the global
odds ratio defined as the ratio of the probability for the family of periodic models to
the probability of a constant rate model, regardless of the exact shape, period and
phase of the signal. The resulting odds ratio of 2.6× 1011 indicates near certainty
in the presence of a periodic signal. In the second instance we ignored the results
of the previous detection and assumed a prior period search range extending from
the rotational breakup period of a neutron star (≈ 1.5 ms), to half the duration
of the data. This gave an odds ratio of = 4.5× 105. This is greatly reduced due to
the much larger Occam penalty associated with not knowing the period as well.
But this still provided overwhelming evidence for the presence of a periodic signal,
despite the fact that it was undetected by FFT techniques.

In their paper Seward et al. [25] used another method commonly employed
in X-ray astronomy, called Epoch Folding, to obtain the pulsar light curve and a
best period. Epoch Folding involves dividing the trial period into m bins (typically
5) and binning the data modulo the trial period for a given trial phase. The χ2

statistic is used to decide at some significance level, whether a constant model can
be rejected, and thus indirectly infer the presence of a periodic signal. In Seward
et al. [25], their period uncertainty was estimated from the half-width of the χ2

peak, which is sometimes used as a naive estimate of the accuracy of the frequency
estimate. Figure 3 shows a comparison of the largest frequency peak comparing
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the GL marginal probability density for f to the Epoch Folding 〈χ2〉φ statistic.
The width of the GL marginal probability density for f is more than an order of
magnitude smaller.

4.2. RADIO ASTRONOMY EXAMPLE

The author has recently generalized the Gregory-Loredo Algorithm to the Gaussian
noise case [14]. Application of the method to a radio astronomy data set has
resulted in the discovery of a new periodic phenomena [14] [15] in the X-ray and
radio emitting binary, LS I +61◦303 . LS I +61◦303 is a remarkable 10th magnitude
binary star [9] [16] that exhibits periodic radio outbursts every 26.5 days [28],
which is the binary orbital period. The radio, infrared, optical, X-ray and γ-ray
data indicate that the binary consists of a rapidly rotating massive young star,
called a Be star, together with a neutron star in an eccentric orbit.

The Be star exhibits a dense equatorial wind and the periodic radio outbursts
are thought to arise from variations in wind accretion by the neutron star in
its eccentric orbit. Some of the energy associated with the accretion process is
liberated in the form of outbursts of radio emission. One puzzling feature of the
outbursts has been the variability of the orbital phase of the outburst maxima,
which can range over 180 degrees of phase. In addition the strength of the outburst
peaks was known to vary on time scales of approximately 4 years [10] [21].

Armed with over twenty years of data Gregory [14] and Gregory et al. [15]
applied Bayesian inference to assess a variety of hypotheses to explain the outburst
timing residuals and peak flux density variations. The results for both the outburst
peak flux density and timing residuals demonstrated a clear 1580 day periodic
modulation in both quantities. The periodic modulation model was found to be
∼ 3×103 times more probable than the sum of the probabilities of three competing
nonperiodic models.

Figure 4 shows the data and results from the timing residual analysis. The
upper panel shows the radio outburst peak timing residuals 5. The abscissa is the
time interval in days from the peak of the first outburst in 1977. Very sparsely
sampled measurements were obtained from the initial discovery in 1977 until 1992.
However, beginning in January 1994 Ray et al. [22], detailed monitoring was per-
formed (several times a day) with the National Radio Astronomy Observatory
Green Bank Interferometer. With such sparsely sampled data the eye is unable to
pick out any obvious periodicity. The middle panel shows the Bayesian marginal
probability density for the modulation period. The single well defined peak pro-
vides clear evidence for a periodicity of approximately 1580 days. The lower panel
shows the Bayesian estimate of the shape of the timing residual variations and the
data, repeated for two cycles of phase. The two solid curves are the Bayesian com-
puted mean shape ±1 standard deviation. The phase of the data was computed
using the most probable modulation period of 1580 days. A similar analysis of the
peak flux density data [14] yields the same modulation period within the errors.

5The timing residuals depend on the assumed orbital period which is not accurately known
independent of the radio data.
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Figure 4. a) The upper panel shows the outburst timing residuals, b) The middle panel shows
the probability for the modulation period of LS I +61◦303 timing residuals. c) In the lower panel
the two solid curves are the estimated mean light curve, ±1 standard deviation, of the timing
residual periodic modulation, repeated for two cycles of phase. The phase of the raw data was
computed using the most probable modulation period of 1580 days.

Subsequent monitoring of the binary has confirmed and refined the orbital and
modulation period. Figure 5 shows a comparison of the predicted outburst timing
residuals with the data versus time. The solid curves show the estimated mean
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Figure 5. Comparison of the predicted outburst timing residuals with the data versus time.
The solid curves show the estimated mean light curve, ±1 standard deviation. The new data is
indicated by a shaded box.

light curve, ±1 standard deviation. The new data, indicated by a shaded box,
nicely confirms the periodic modulation model. This discovery has contributed
significantly to our understanding of Be star winds.

5. Conclusions

The aim of this review has been to draw the attention of the larger scientific
community to the power of Bayesian inference through recent examples of its
use in spectral analysis. For scientific data with a high signal to noise ratio, a
Bayesian analysis can frequently yield many orders of magnitude improvement in
model parameter estimation. It also provides a powerful way of assessing competing
theories at the forefront of science by quantifying Occam’s razor and provides
a means for incorporating the effects of suspected systematic errors. For some
problems a Bayesian analysis may lead to a familiar statistic but even in this
situation it often yields powerful new insights concerning the interpretation and
generalization of the statistic. But most importantly, as a mathematical theory
of extended logic it provides a well defined procedure for answering any scientific
inference question for a given state of knowledge.

This research was supported in part by a grant from the Canadian Natural
Sciences and Engineering Research Council at the University of British Columbia.
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