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2003 Problems

Problem set 1 2003, Solution

Problem 1: The total internal energy is unchanged. Since the final temper-
ature is the same on both sides the final temperature must be equal to the
initial temperature. The pressure is also the same on both sides. Combining
the two sides into a single system gives for the final pressure

we also have

giving

The final pressure is then

and

Problem 2:
a: The final volume is
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b: The final temperature is

Ty =T;—— =1554 K
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Problem 3: For the pressure to double, the number of mols on the side
where the temperature is constant must also double. This means that all
the molecules must move over to that side. This requires the temperature
on the hot side to be infinite which is not practical. In the general case the
pressure is constant

neRT, = np RTh,

With n = n. + np we find

Thn
n, =
¢ Th +T¢
giving for the final pressure
T T;
Pf _ n.RT, — 2P, h
v T.+Th

which agrees with th previous result that the pressure can only double in
the limit T}, = oo.

Problem set 2 2003, Solution
Problem 1:

1 N!
Ng)=() ————
a: Evaluating the exact expression we find
p(10) = .1762

b: Substituting the crude version of Stirling’s formula

Inn!=nlnn-—n

we find
p(10) =1
which clearly isn’t a very good approximation
c: Using
n! =n"e "V2mn
I find
10) = =.1784
p(10) sqrtm10



which is a quite good approximation.
Problem 2:
the entropy of a mol with ¢ quanta/oscillator is

S =3Nakp(In(g + 1) —In(g)) = 3R(In(q + 1) — In(q))
where N4 is Avogadro’s number and R is the gas constant. We find
S(g=05)=238JK'S(g=1)=346JK ! S(¢g=3)=56.1JK!

Problem 3:

The internal energy is
3R’I’LTE

~ exp(Tg/T) — 1
where n is the number of mols. With Tr = 100 K the energy per mol is thus

U (50) = 2.16 10~ 2% J/oscillator

U(100) = 8.04 10 22J /oscillator
U(200) = 2.13 1072J /oscillator

Problem set 3 2003, solution

Problem 1:
a: The mass of an argon molecule is

~39.95 x 1073

=20 0 T — 6634 x 1072k
"= 6.022 x 107 % &

giving for the thermal wavelength

h

A= ToemtaT 1594665073 x 10 'm
and for the entropy
S = R(ln(ljf—;;) + g)
with P = 10> Nm ™2 we find
S =154.99JK 1



b:The change in entropy is

— Ty -1
T =3 1n300 14.41JK

f
AS:/ CpdT"  5R . 600
2

c: The entropy doesn’t change.
Problem 2:
a: The entropy associated with the outcome m = 0 after N tosses is

N

V2N

b;The entropy in the two cases for the outcome m = 100 is

S = kpIn( ) = 0.693 x 10°kp

2N (—1002
V2r N PN
(almost undistinguishable from previous result)

Problem 3:
1 kg of aluminum contains 37.04 mol, so the specific heat is

S(m = 100) = kg In( )) = S(m = 0) — 0.005k5

Ca; =3 % 37.04R = 924JK !

The specific heat of the water is Cyr = 1 kCal K~ = 4186 JK~!
a: The final temperature can be obtained by solving

(400 — T)Car, = (T — 300)Cy

or T'=318 K.
b: The change in entropy of the water is
318
ASw = Cyln—— =243.91JK !
Sw = Cw 300 3.91J

c: The change in entropy of the aluminium is
318
ASp =Cpyln—— = —211.95JK™*
Sai=Cua n400 95J

so there is a net entropy gain in accordance with the second law.



PV plot of Carnot cycle

Problem set 4 2003

Problem 1:

a: Consider the PV-plot of a Carnot cycle in figure

The corresponding ST-plot would be:

b: For the Otto cycle plotted in a PV -diagram

the corresponding ST plot would be

Problem 2:

a: The Sackur-Tetrode formula for a monatomic ideal gas is

14 5
giving with
_ 3NkpT

v 2

for the Helmholtz free energy

v
F=U-TS= —NkBT(ln(W) +1)
b: The chemical potential is given by

_ G _F+PV
N N

T
= —kBTln(kL



ST plot of Carnot cycle

The mass of an argon molecule is

3995 x 107

= — 0.6634 x 1072k
™ G022 x 10 | 0010k

giving for the thermal wavelength for Argon at 300 K and pressure 1 bar:

h
A= —— =0.1595 x 10 'm

V2mmkgT

and for the chemical potential p = 0.6685 x 10719,
c: The change in the chemical potential is

P
Ap = kBTlan =0.1917 x 10 19J

)

assuming the temperature is unchanged.
Problem 3:From

Y 360 x 103
ey =""""" _19%103
o~V T 3x10° x 10

we find for the density

p= % = 770 kgm 3 = 0.77 kg liter !

Oil?



PV plot of Otto cycle

Problem set 5 2003. Solution

Problem 1:
a: The Helmholtz free energy has the differential

dF = —SdT — PdV + pdN

o7 =~ (%) = o707 =~ (57)
ovor  \oV)rnx 0TV  \oT/)yn

b: The Gibbs free energy has the differential

Hence

dG = —SdT + vdP + pdN

O () e ()
OPOT  \0P)ry OTOP \OT)pn
Problem 2:

When pepper is sprinkled on the water surface it will float on top. The
reason it floats when sprinkled is the high surface tension of water. The
pepper is actually heavier than water, as you can check by putting in the
pepper first and then adding the water. In that case the pepper will stay at
the bottom. When the water surface is touched by soap, with the pepper
floating, the pepper flakes will rapidly be pushed to the side and some will

Hence




ST plot of Otto cycle

S 2

sink. The soap bar creates a soap film slick with reduced surface tension,
pushing the pepper flakes to the side as the slick spreads.

Problem 3:
a: Substituting for the critical parameters I find

a=0.1525 x 104" Nm~%; b= 0.5055 x 10~ 2%m3

b: The T' = 37 K isotherm were water a van der Waals fluid is drawn below
for 1 mol of water

c: I find that the isotherm crosses 1 bar at 0.039 1 while the volume of 1
mol of liquid water is 0.018. On the gas side the intercept is at 31 liter close
to the ideal gas value.

Problem set 6 2003.Solution
Problem 1:
The volume of 1 mol Na is 24 x 10~% m?3.

N 1/3 10, —1

The Fermi energy is thus

0.50 x 10718J = 3.1eV



100 373K vdW isotherm

P(bar) 0

—100 1 v(ite) 2

Problem 2:
The Fermi wave vector is

37‘(’2 1/3
kp = (—) =0.86 x 101°m3

v
giving
h2k2
Tr = —L = 6.0K
kab
for the Fermi temperature and
hk
vp = —& = 181ms !
m

for the Fermi velocity.
Problem 3:
The probability that there are n links open is

e—n,Be

Z

bn =




1
7 — —nfBe _
Ze 1—ePe

The mean number of open link is

1
<n>=— —nfe —
n Z ne ]
we have 5
2 2 7nBe _ € +1
< >=
n Z n’e er EEYE
giving for the variance
—Be
2 2_ €
<nt> - <n>'= g g

Review problem set for 2003 final. Solution.

Problem 1:
The Helmholtz free energy is
V —Nb aN?
F =—-NEkpT(l 1) — —
ST ) +1) = 5
T “mkgT
We find for the entropy
oF V —Nb NEkgT Ov
= = Nkg(l 1) — -1
5="%r s =)+ U == =57
o vV — Nb 3Nk
S = Nkp(ln(——) + 1) + —"2
Vg 2
so that the internal energy is
g = 3NksT alN?
2 2V

b: When the gas is heated from temperature 7" to 27" at constant volume
the work is
W =0

10



and the heat is
3NkpAT  3NkpT

Q=AU-= 5 5
The pressure is
I%ZN@T_wW
V-Nb V2
When expanded from volume V to 2V at constant temperature the work is
v 2V —Nb aN?
W =-— . Pdv=—NkgTIn vV —Nb + %

The change in internal energy is

aN?
AU = —
%

giving for the heat at the second stage

2V — Nb
=AU -W = NkgTln ——
@=AU-W BE Y TN
Problem 2:
a: The ideal voltage of the cell at 298 K, 1 bar is
AGprocess _ 237.13 _ 193V
2N ze 2 x 6.022 x 1023 x 1.602 x 1019
b: 50
=z __3
oT
The entropy change in the reaction is
205.146

AS = S; — 5; =130.68 + —69.91 = 163.34JK !
The change from the result in a: is, if the temperature is raised to 350K
and the pressure remains 1 bar

TAS

AV ~ —
v 2N e

= —0.044V

t.e. the voltage decreases by a small amount when the temperature iis in-
creased.

11



0G
8_P_V

The volume of the liquid is small compared to that of the gas so we neglect
the change in G for the liquid water. We thus have for the change in Gibbs
free energy per mol of gas

Py P RT P
Vdp:/ %dp:RTln%

P; P; i
RT In(20)
AV =15———=.06V
v 5 2N 4e
The voltage increases.
Problem 3:
a:
1.5
P(bar) 1 3 2
1,
1
20 0. 40
V(liter)

b: The cycle is counterclockwise in the figure above = it therefore works as
a heat pump or a fridge.

c:In the first step

W

Wi T

12



T — Ty
Ty

W =—-Py(V1 — Vo) =—-FPW = —R(Ty — Tp) = —835.5J

5
Q = CpR(Ty — Tp) = 8.315 x 100 = 2078.75.]

In the second step

4/3 4/3
sen(®)” -5 (3
Vo

3RTy [T\ 3
W=Us—U; =Cy(To —T) = ! [(—1> — 1] = 1054.7J

2
Q=0
In the third step
W

=0
T 4/3
Q=-Cy(Th —Tp) = gR [Tl (%) - TO] = —2302J
0

Problem 4:
a: Let m be the mass of a molecule and M the mass of a mol. At constant
temperature

mgh Mgh

pP= Poeasp(—kB—gT) = Pyexp(~— ) = 558 bar

b: The pressure satisfies the differential equation

dp = —pgdh
_Nm _ PM
P="Vv T RT
giving
dP Mg

= =_"7 g
P R(Tp—h)

P _Mg, .l

In— = 1 - =
ng T M)
Mg lh
P = Pyexp (ﬁ In(1 — ?0)> = .527bar

13



Problem 5:
a: The first part involves numerical work which is a bit more than can be
expected at an exam. The entropy of an Einstein solid is

S = NkB((1+%) ln(l—i-%)—% mé)N - 3NAR((1+%) ln(l—i-%)—% mé)N

where ¢ is the number of vibrational quanta. Solving numerically for q/N
with the given value of S gives

q
— = .682
N

solving numerically for Tg in

q

1
N exp(TTE) -1
gives Ty = 269 K. b: The specific heat per mol is approximately
C=3R=250JK!

c: To find the Fermi energy we first find the Fermi wave vector

5\ 1/3 5 1/3
kp = (?m N) = (M> — 175 x 10 m 3

4 P

Here the number of conduction electrons in a mol N is 3N, and p is the
mass density and M the molecular weight The Fermi energy is thus

%

= 0.187 x 10—-17 J = 11.7eV
2m

€F

where m is the electron mass.
d: The Fermi velocity is

hkr _ 2.0 x 108ms™!
m

e:The Fermi temperature is

Tr=E — 135 x10° K
kg

14
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2003 Exams

Midterm October 1 2003. Solution.

a: A P,V diagram for the process looks like the figure below b: With the
sign convention

AU=Q+W
we have

Qa>0, Wa=0;Qp>0; Wp<0; Qc <0; Wg=0; Qp <0; Wp >0

c: The final Temperature after step A is 27y. The number of moles is 1}?7‘1/8

_ [PV

5 , Wa=0

Qa
RT = 2PV} in step B giving
QB = —WB = 2POV0 In2

PV,
QC:_fé)OaWC:O

QB = —WB = —P()VO ln2

15



Problem 2:
a: The mass of the air inside the balloon is

MPV
RThot

= 387.5 kg

b: The mass of the cold air displaced by the balloon is

MPV
RTcol d

= 581.3 kg

The difference is the maximum payload 193.8 kg.
Problem 3:
a: The average number vibrational quanta per oscillator will be

a

= .58

1
N exp(%E) -1

b:The entropy per oscillator is

N+q1nN+q

§=—ke(—g N

g, q,_
+ o) = LOdkp

Midterm November 5 2003. Solution.

Problem 1:a From v 5
= Nkp/ln(—— -
S kB[n(qu)+2]

and the ideal gas law we find

kT S 5
v ="p PR, 7o)
Substituting S = 154.84 J/K ,we find v, = .410029 x 1032 m3.
b: The entropy of 1 mol of Argon at 400 K is then (with V; = V;T¢/T; and
Vgt = vg, (T ) Ty)3/?
qf g \+Lf 3
R x5 400

— 5+ —"In—— =160.96 J/K
Sy =S+ —5—Ingoo =160.96 1/

Alternatively

400 g7 SR 400
A = _ = — 1 _—
5=Cr /298 T~ 2 "“agg

16



Problem 2:
a: The energy is unchanged so the Temperature is Ty = 350 K. The pressure
is thus

T
Py = % = 29.1bar

b: The change in the entropy is

350 g7 (350 gT' 2
as=cv([ "4 0T _ 38,350

— ——— ) =257 JK!
300 I + 400 T 2 300><400)

c: Yes, Cyis different for a diatomic gas.
Problem 3:
a:
AG =VAP =18 x 107 ° x 299. x 10° = 538.2 ]

Py
AG = / VdP = 1.5RT In(300) = 21.2kJ
P;

c: The minimum voltage required will increase since the Gibbs free energy
of the gases produced will increase more than the free energy of the liquid
consumed. Another way of looking at is to note that the liberated gases
will have to do more work against the environment. Hence more work is
required and the voltage needs to be increased.

Sessional exam, December 10 2003. Solution

Problem 1:Given

— Nb N?
F = —NkgT (m(VN ) + 1) .

a: The pressure is

b:The internal energy can be obtained by first computing

OF

S:_a_T

17



and substituting into
U=F-TS

Alternatively, we can find the internal energy from

_ 9BF
U=""55

We have

V — Nb - aN?pB
N(2Trh26)3/2 V

mkp

BF = N (In(

differentiating we find

g 3N aN? 3NkgT aN?
28 vVE 2 V2

c: The specific heat Cy is

o _(8_U) _ 3Nkp
Vo\oT ) yr T 2

Problem 2:

a:From the table the available work available under ideal conditions is

AGf — AG; = GAG002 + 6AGH20 — AGglucose — GAGO2 = —2878.94kJ

Since work is positive if done on the system a negative AG means that the

system (muscle) does the work.
b:

St —S; = 6Sco, + 6SH,0 — Sgiucose — 6AS0,) = 259TK

TAS =273 x 259 = —77.20kJ

The negative sign in the entropy change means that the system gives up
heat, in agreement with the everyday experience that you get hot when do-

ing physical work.
Problem 3:

a: The probability per unit volume that a state with wave vector k is occu-

pied at temperature T is

efﬁhck
pp = 7
where (with a factor 2 for spin)
Z =1+ e ek

18



b: The number of allowed wave-vectors between k and &k + dk is

drk2dk
(27)?

The number of neutrinos expected in a volume V at temperature T is thus

(n) = 8V /oo ke Phkedl  1.80k%T3
C@2n)3 )y e Fher1l  p2p3c8

c: Substituting
kp =1.381x10 BJK !, T =1.95K; h=0.10546x10 33Js; ¢ = 2.998x108ms !

gives
(n) =1.1 x 10*m ™

Problem 4:
a:The volume of 1 kgof water is 0.001 m3, while the volume of 1 kg of ice is
1/0.917 = 0.001090 m®. From the Clausius-Clapeyron equation

_ TAVAP 273 x (0.001 — 0.001090) x 99 x 10°

AT L 3330000

=-0.72K

L=AH =AU + A(PV)

The first term on the right hand side represents the change in internal en-
ergy while the secon represents the work done by the vapor against the
atmospheric pressure. The volume of 1 mol water vapor is

_ BT

Y="p

neglecting the volume of liquid water gives for the work term
W = RT = 3.10KJ
giving for the change in internal energy
U=L-W = 37.56KJ

Problem 5:
a: After the compression the partial pressure of the water vapor remains

19



1.013 bar. The air pressure is then P, = 2.987 bar. The number of mols of
air is equal to the initial number of mols of vapor.

PV 10°
=t Y 3934
"M T RT T 373 x 8315
The final volume is thus
RT
V= 2 = 0.335 m?
Py

What is the volume of gas at equilibrium under the new conditions?
b: The number of mols of vapor when the gas is compressed is

L 1013 % 10° x 0.335
J T 8315 x 373

The number of mols of liquid water is thus

=10.94

ng=mn; —ny =214
The weight of the water is

21.4 x 0.018 = 0.385 kg

2002 Problems

Problem set 1 2002. Solution

Problem 1:
a:
Since AV << V we can put

AVtotal = AVl + AVQ +.---=Vx (ﬁlATl =+ ﬁzATg + - )

Adding up the terms yields AV = 0.0425 liter.
b:
The work is (with the sign convention used in class)

W = —PAV = 10° x 0.0425 x 1072 = —4.25J]

c: Cp for water is 4.186 kJ kg 'K—!. We have

ou

V=l

20



oUu ov
Cp=— P—
P =57 lp+ T lp
Since we are only interested in an estimate we neglect the difference between

the derivatives of U at constant P and V and find
AV

_ _p=" _ 3 _
Cv =Cp PAT 4.186 x 10° —4.25/100

giving
v = Cp/Cy = 1.00001
Problem 2:
The volume change for one degre is
AV =7 d*/4% Ah = 7(0.25 x 107*)? x 1073
The volume of the bulb is thus
AV/B =1.08 x 107%m? = 1.08ml

b: The bulk expansion coefficient is 3 times the linear coefficient, i.e. about
10% of the coefficient for mercury. So the error is about 10%. c¢: The volume

of the column is

hd?
e — 9.0 x 10 8m?

which is = 1/50 of the volume of the bulb. So the error here is small.
Problem 3:a
The number of mols in 1 kg

The heat capacity per kg is thus
Cr = 3nR = 447J kg7 'K~!

much less than for water!
b: The heat needed to boil the water is

Q = m(ATWCwater + L)

where m is the mass and L is the latent heat of evaporation. The amount
of iron is then
Q 10 x 4180(80 + 540)
CIATr 447 x 900

= 64.5kg!

21



Problems set 2. Solution

Problem 1:
a:We have

P mgdz

P kT,
with solution mas

InP=— ka_'o + const
With the boundary condition at z = 0 we find
—mgz
P=P
o exp( kT )

b:
The differential for the pressure now becomes

d_P B mgdz

P k(T, —lz)

Integrating it we get

mg lz
InP = t+ —In(1 - —
n const + 2l n( To)
The boundary condition at z = 0 gives const = — In P, and the expressions
can be rewritten as ]
m z
P= Poexp(k—'lg In(1 - 7))

Obviously this formula is only valid for heights

T,
< -
S
Note that in the limit [ — 0
In(1 — l_z) o
T, T,

c: Substituting
m =29/6.02/10 kg, g =9.81ms 2; k=1381J K 1,1 =10 2Km*

gives the plot.

22



Atmospheric pressure

o
(o]
!

isotherm

| adiabatic lapse rate

Pressure in bar
o
()]
|

o
~
o

4 6
Height in kilometers

Problem 2:
The energy required is
90kcal = 377kJ

so the time required is
1
377000/600 = 628s = 10§minutes

Problem 3
For 5 heads or 5 tails the probability is

For 4 heads 1 tail or 1 tail 4 heads the probability is
1 5! 5

251141 32
For 3 heads 2 tails or 2 heads 3 tails we have for the probability

1 5! 10

252131 32

23



Problem set 3 2002

Problem 1:
a:
The number of ways that one can obtain 500 000 heads and an equal number

of tails is
106!

(-5 x 1061)2

Using Stirling’s formula on the form

n! =~ n"e "V2mn
we find
(1000000)1000000 exp(—1000000)+/ 271000000 21000000

Q~ - =
((500000)500000 exp(—500000)y/ 27r500000) V5000007

b: The probability after 1 million coin tosses with a fair coin to get exactly

500 000 heads is then ) )

v/500000 1253
This is in qualitative agreement with the fact that the width of the proba-
bility distribution is of the order /N = 1000
c: The entropy (in units of the Boltzmann constant k) of the state with 500
000 heads and an equal number of tails is

S/k =InQ = 10°%1n2 — In(+/5000007)
The last term is small compared to the first so
S/k ~10°1n2

Problem 2:
a: An Einstein solid has on the average 1 vibrational quantum excited per
oscillator. The multiplicity factor for an Einstein solid is

(N+q—-1)!
(N —1)lq!

From Stirling’s formula the entropy is thus

S =k[(N +¢)In(N +¢q) —qln(¢) — NIn(N)] = Nk[2In2N — 21In N]

24



The entropy per oscillator thus

%: 2k1n2

b: We express the energy in terms of the internal energy U = hwgq

U U U U
From
o5 _1
ou T
We find for the temperature substituting ¢ = N at the end
hw Tg U U
T T In(N + %) —ln% =In(N +¢q) —In(q) =In2
or
T/Tg =1/1n2
Problem 3:
a:

From the previous problem we have

Tg

7 = (N +4q) —In(qg)

we find for the solid with 1/2 quantum per oscillator

Tg Tg
— =ln3=T=—
T~ In3
For the one with two quanta per oscillator
Tg 3 Tg
—=lhn-=T=—
T2 In3
b: On the average there are now
1 1
(24 =)=1.25
2( + 2)
quanta per oscillator. We find
Tr Tr
— =lh-=T=
T " In?

25



Problem set 4 2002. Solution
Problem 1: From

S = Nk (m(NL) + 5)

Vg 2

2\ 32
Ve = (27rkaT>

we see that the temperature for which the entropy would turn negative is
given by
v
.52
N,

T Ph3 exp(—g) 2/5
B m3/2k2/2 (2)3/2
Substituting m = 4 x 1.67 10727 kg, h = 6.62 10734 Js, kp = 1.381 10—23
JK! we find T = 0.68 K.
Problem 2: The Sackur-Tetrode formula can be written
const.VT3/2
N
If the entropy of stays constant in a system with a fixed number of particles

or

S = Nkp In(

ViTiB/Z = VfTJ::’/2 = const.
With
T = const.PV
PfV7 =RV,
with v = 5/3.
Problem 3:. If
vg = constant T~

we have for an isentropic process at constant N

VT® = const

or
vitepa — const

or

l+a= Ta

5
« . _ 5 _

giving a = 5 = 2.5.

26



Problem set 5 2002. Solution.

Problem 1:
a:Given that

N 4
U(S,V,N) = const. N(V)M exp([])ij)
we find
s 0U|  _04U
~ 0SIyv Nksp
p__ 3_U _ 0.4U
Vs N |4

comparing the two expressions we find
PV =04U = NkgT

b:Substituting for U in the expression for P above

N 0.4S
P = const.0.4(— )" exp(——r
() exply

v )

we find that for an adiabatic process (S, N =const)
PV = const.

Hence v = 1.4.

Problem 2:

a: Since the cycle is run in the clockwise direction the device does the work
and will serve as a heat engine.

b: The heat absorbed B = C' is
Qu =Cp(Tc —Th)

The heat expelled is
Qc = Cp(Tp — Ta)

The coefficient of performance is thus

cop= W __Qc_,_ Tp—Ta

Qu Qu T —Tp

Now, combining the adiabatic law

PV7 = const

27



Pressure
B C
—_—
P
A D
Volume
with the ideal gas law
PV =nRT
we find (y-1)/
Pg\ -/7
Tg =Ty (=2
B 4 (PA>
Pg\ -1/
Te=Tp (=2
¢ b (PA>
% (+-1)/
P\ 1 1_1/14
co ( PB> (1) 0.48

Problem 3: We imagine that each gas is expanded isothermally to fill the
whole volume

fa Vi+Va Vi+Va
AS :/ ?Q - ”1Rdv+/ 2k
(]

1% V

Va V
Carrying out the integration we find

i+ VW i+ V;
1+ 2+n2Rln Lt 2:anlnnl—i_Tm—i—ngRlnnl—i_n2
1 2 ni 2

AS = anln
Substituting n; = 1, ns = 2 gives

AS =RIn3 +2Rlng

28



Problem set 6 2002. Solution.
Problem 1: From the Clausius Clapeyron equation we find

dp L

dar — T(Vi-V,)

For 1 kg of water L = 80 1000%4.186 = 3.34 x 10° J. The change in volume
of 1 kg of water is 1/1000 — 1/917 = —0.905 x 10~* m®. The change in
pressure is AP = 99 x 10° N m~2. The change in temperature is thus

AT = APT(V, - V,)/L = —0.80K

The melting temperature is lowered by a little less than one degree
Problem 2:

a: When the pressure of the water vapor is equal to the equilibrium vapor
pressure the chemical potentials of gas and liquid are equal. From

dp = —sdT + vdP

we find that, since the neither the temperature nor the liquid chemical poten-
tial will change , the excess chemical potential in the vapor is approximately

Ap = pg —p =vgAP

Since

kgT
Vg = ——
P
we find using AP/P =0.1
Ap = 0.1k T
b: Using
4 3
v= 1" , A=dmr?
3
for the volume and area of the drop we find for the excess Gibbs free energy
4 3
AG = (g — pg) Tt odmr?
vl

The maximum occurs when dAG/dr = 0 or

20

Ap
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Since 1 kg of water contains 1000/18 N4 molecules and has a volume of 1073
m? we find using R = Ngkp = 8.315 J Mol '!K~!, ¢ = 0.073 Nm !

~2x0.073107° x 18

=1.0x10"8
0.1 x 8.315 x 300 ©Am

Problem 3:

a:We have
G U TS ﬂ

NN NN

and for oxygen

U+PV 7

———— ~ —kgT

N 2P
giving for the chemical potential of the gas in electron volt
7 x 298 x 1.381 x 102 298 x 205.14
Hg = . - X_ - . ——= = —0.547eV
2 x 1.602 x 10~19 6.022 x 1023 x 1.602 x 10—19

b: Let N, be the number of occupied sites. The number of ways N,
molecules can occupy N sites is

N!

AT AT

The entropy is thus using Stirlings formula
S=kplnQ=kp(NInN — NyIn N, — (1 — Ng)In(N — N,))
c: The Helmholtz free energy is
F=U-TS=Nue—TkplnQ =~ kp(NIn N—N,In N,—(N—N,)In(N—N,))

Giving for the chemical potential of the absorbed atoms

OF N,
= kT
Ba= 5N, “ " PEE NN,

What is the chemical potential of the absorbed oxygen under the conditions
in part b?

d: Let © = N,/N. At equilibrium the two chemical potentials must be
equal or

)

,ug—e:kBTln(lfw
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solving for = we get

r g — €
1—x_eXp( kBT)

or with kgT = 298 x 1.381 10723/1.602 1019 = 0.0257 eV

r = ! = ! = 0.0033

exp(#) + 1 exp(glor) + 1

The fraction of occupied sites will be rather small at this temperature!

Review problems for final 2002. Solution

Problem 1: Let the energy levels be €, —e and 0. The partition function is
Z=ePe4 1460
The probabilities are
Pl = 6766, la 67'36
Z Z Z
With e =0.1eV, 1eV=1.602 x 1071 J, kg = 1.381 x 10723 J K~! we find

P; =0.0004, P, =0.0205, P;=0.9791

b:When the particles are distinguishable each particle can be in any of 3
state 9 states altogether:

system state | 1st particle | 2nd particle

© 00 O U W N
W W WM NN
WM W Wi

If only one particle can be in each state and the particles are identical,
system states 1,5 and 9 are forbidden. The pairs of system states (2,4),
(3,7) and (6,8) are the same, leving only three distinct system states 2,3 and
6.
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If the particles are identical, but any number can occupy the same state the
distinct system states are (1,2,3,5,6,9) leaving 6 states altogether.
Problem 2:

a: The partition function for a single oscillator is

1
_ —Bhw —2Bhw —3Bhw . _
Z=1+e +e +e 1= o Fhw

The probability tht there are exactly 3 quanta at temperature T is thus
Py =e %9 (1 — eF¥)

Substuting 8 = 1/(1.381 x 10723 x 300) J~1, Aw = 0.02 x 1.602 x 10719 J
gives

P; =0.053

b: The average thermal enrgy stored in the oscllator is

g 1 & —nBhw 81Z— hw

Problem 3:
The most probable speed v, the mean spead < v > and the rms speed vy,
are given by, respectively

[2kgT |8kpT [3kgT
Vp = y KVU>=([——, Upms =
m mw™m m

with m = 32 x 1.67 x 10727 kg, = 300K, kp = 1.381 x 1023 JK! we find

1 1

vp = 394ms™!, < v >=444ms™!, vy = 482ms™

2002 Exams

Midterm October 4 2002.

Problem 1:
a:. The initial pressure in the chamber containing the gas is

P =RT/V =831 x300/10"% = 2.49 x 10°NM 2 = 2.4%bar

b:. Since the gas expands freely into the initially empty chamber no work is
done and no heat produced. The internal energy is thus unchanged. Hence
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the temperature is unchanged while the pressure is halved as the volume is

doubled = T' = 300, P = 1.25 bar

c:. The final pressure is

Vs

Py = Pi(—=
f Z( Vv

i

)Y =1.25 x 27 = 3.97bar

if ¥ = 5/3 is used. We find for the final temperature

300 x 3.97

_ — 478K
! 2.49 7

d: The final pressure is larger than the initial pressure because the initial
expansion involved no work, while in the final compression work was done
on the gas, heating it.

Problem 2:

The number of mols is

PV 10°x2x 10

=—=———— =.0801

"TRT T 8315 x 300

Since the pressure is the same
n1R300/V = nyR400/V
combined with
n1 + ngy = 0.0801

gives ne = 0.0343, ny = 0.0458. We obtain

niRT  0.0343 x 8.315 x 400

pP= = =1.14
v 10-3 bar
Problem 3:
a: The number of vibrational quanta per oscillator is
U 1

z_ = ——p—— =154

N Nhw exp(T) -1
b: From

S =kp[(N+q)In(N+¢q)—NInN —glng]
q q q q
— =(1+=)In(1+ =) - =In(=
s 1+ )l +57) = 5 In(5)
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L54
)

c: The specific heat per mol is with N = 3N4

= In(1 + 1.54) — 1.54In(—— = 1.70

_9U _ 3Na(hw)?exp(Z2)
T kpT?(exp(ZE) — 1)2

1 exp(:
_3pilp_=2h) .
27 (exp(z) — 1)
Since the temperature is significantly larger than the Einstein temperature
we expect a result close to 3R, the Dulong and Petit value.

=2.93R

Second midterm 2002.Solution.

Problem 1:

Since the expansion is free no work is involved and there is no change in
the internal energy. Hence there will be no change in the temperature.

a: The final temperature is Ty = 300 K. The final pressure is

(n1 + TL2)RT
Pp=-—Fr—""
Vi+ Vs
Substituting

ni=1ny =2 V3 =V =10"3m3, T = 300K

gives Py = 37.4 bar

b:From v .
= Nkg|l —
S B[anq(T) 3l
we find
Vi+ Vs 5
AS = RlIn(————— —
(nl + n?) ( Il( (nl n nz)NAvq 2)
Vi 5 Vs 5
_ 1 21 _ 1 e
n1R<n(n1NAvq>+2> n2R(n(n2NAvq>+2>
(1 + Vz)m) ( (h + Vz)n2> 1
=nR{In(m——— | +mR|In(————= ] =141J K
" ( n(Vl(nl + n2) " a( Va(ni + n2)
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c:The process is isothermal and doesn’t depend on the form of vg(T). So, it
doesn’t matter if the gas is monatomic or diatomic!
Problem 2:
a:

Qc 1

Qc

The second law implies that the entropy dumped into the hot reservoir must
be a least as large as the entropy removed from the cold one. Thus

Qn  Qc
Ty — Tc
giving
1
COP < T
Tc
b:
We have
_ Qc
CcOoP
Substituting
COP = T , W =Jxtime, Qc = a(Tyg — Tc) * time
2(72 - 1)
gives
J_QMﬂpJRF
= T
Solving for T, gives rise to a quadratic equation. Putting
J
r=—
4o
we find
2¢0Tc = Th + TE — 2TuTc
Tc =Ty +x— Va2 + 22Ty
Problem 3
a:

f Cpdt Ty 340
AS = =Cpln=L =418%18ln— =10J K}
S /Z T Cpln T 8 x181n 508 0J
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We find 8 T
T =-5=-5,AT — C’plni

Hence
f T
AG = —S;AT — cp/ dTln

)

T
= —S;AT — Cp(TsIn Tf —T;—T)
i
For an estimate it is enough to include only the first term giving
AG =~ 2.94kJ

A more accurate estimate involves evaluating the full expression giving

AG =~ 3.15kJ

Sessional exam, December 10 2002, Solution

Problem 1:
a:

V - Nb aN?

F = —NkgT(In( ) +1) —

Uq

v — 2mh? 3/2
T \ mkpT

The entropy is given by

OF V —Nb NkgT Ov
S=—-— = Nkg |1 1 —1
8T N,V B (n( N’Uq )+ ) Uq 8T V,N
or
V —Nb 5
S=Nkp|l =
B(n( Nvg )+2>
b:
Oy — T@_S _ NkBT% _ 3Nkp
oT N,V ’l)q oT VN 2
(¢H 9 i
alN 3NkpT
=F+4+TS=-—
U +7TS v + 5
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When the gas is expanded from volume V' to 2V the change in U will be

2
AU =U; —U; = +%

To find how much work is done by the gas during the expansion we need

p__ OF _ NkgT  aN?
 9Wl|pn V-Nb V2
We have for the work
2V V.| NkgT ~ N2
= - PdV = — —a—|d
w . 14 /V lv NG aVQ] 14
evaluating the integral we find
aN? 2V — Nb
= — — NkgTl
W=y ~NVesThy gy

Problem 2:
To find the voltage we first calculate

1 _
AGreaction = AGwater - EAGowygen - AGhydrogen = —237.13kJ mol 1

There are two N4 electrons circulation per formula unit mol

937.13 x 1000
ltage — — 1.23Vols
Voltage = o 5 % 105 x 1.602 x 10-1 3Vo

b: To find the change in the Gibbs free energy of the gases consider first an
infinitesimal change at constant T,V

dG =Vdp

The change when the pressure changes by a finite amount is thus

P
0G = / VdP = / gdP RT IHF

)

for the oxygen and hydrogen the Gibbs free energy per mol will thus in-
crease by

6Gozygen = 0G hydrogen = 8-315 x 315 x In10 x 1073 = 5.7 kJ
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Neglecting the volume change of liquid water with pressure we find for the
chnage in G with pressure

8Guwater = 18.068 x 1078 x 9 x 10° x 1072 = 0.016kJ

c: The voltage of the cell will change by

(1.5 x 5.7+ 0.016) x 1000

oV =
4 2 x 6.022 x 1023 x 1.602 x 10—19

= (0.044Volt

The voltage will increase.

Problem 3:

a: If the particles are distinguishable there are four possible states with
energies, respectively, €1, ez and €;+¢€3. Hence

7 — 6*2561 + 672661 + 2676(61+62)

The probability that one particle is in state 1 and one in state 2

2 x e~ Blertez)

Py = 7

b: If the particles are identical and two particles are forbidden from occu-
pying the same state (fermions) there is only one allowed state the one with
one particle in state 1 and the other in state two. We must not distinguish
between the cases where the first is in 1 and the other in 2 and the reverse.
The probability is thus

c: If the particles are identical and several particles are allowed to occupy the
same state (bosons) there are three possible states. The partition function
is thus

7 = e~ 2Ber 4 o=2Ber e~ Blertez)
e Blertea)

Py = 7
Problem 4:

a: See below for figure

b: There will be more work done by the gas during the adiabatic expansion
than work done on the gas during the isothermal compression. So the system
will work as an engine.

Cc:
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Pressure

Volume

A Since the volume is contstant there is no work. The heat added to
system is

3
Qa=CyAT = 58.315 x 100 = 1.247kJ

B There is no heat added to system the work done by system is

Wg = AU = Oy AT = 1.247k]

C There is no change in internal energy. The work done on system is
equal to the heat given up by system.

Vi 3 4
= —RTIn-L = SRTIn- =1.08k
Wo = ~RTln 3> = S RTIng = 1.08kJ

Where we have used the adiabatic law
h_(30)°
Vi \400
Problem 5:

a: The partial pressure of water vapor is

0.023/2 = 0.0115 bar
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The vapor pressure at temperature 7' is approximately

44000 . 1 1
P =0.0115 = 0.002 - =
0.0115 = 0.00 3exp(8.315 [293 T])
Soving for T" we find T' = 282.For the temperature to drop by 11 degrees the
altitude has to be 1100 m.
b: The pressure drop of the water partial pressure is equal to the weight of

water vapor in a column below

mgP mgP mgP
kT~ kp(To— 0.012) " " kp(Tw)
maqgz
PP exp(_ B;av) -
18 x 1. 10727 x 9.81 % 11
0.0115 exp(— 10X 1073 X 1077 x 981« 1100, _ ) 1614,

1.381 x 10—23287.5

So the partial pressure will have dropped by 0.0009 bar or approximately
10%, which only will have a small effect on our result.

2001 Problems

Problem set 1

Problem 1:

a:

Let x be the temperature when the two readings ar the same. From the
conversion formula

9
Tp = g$0+32

Putting xp = z¢ = « gives

r = —40
b:
In(218) — 4.697
T = - =084 K
exp( 3017 ) 08
Problem 2:

If the coefficient of linear expansion is « the coefficient of area expansion is
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2a. The difference between the areas od the disk and the hole is the area of
the gap:

0.082
Amw::2@%md——aM)AAI’:iK287——L2ﬂ05w£—z—l85::L43105n9
=0.143 cm?

Problem 3:
We write

n =mn1+ ng

where n1 and ns be the number of moles of gas in the two compartments in
the final state. We have with 77 = 273 + 15 = 288 K, To, = 273 4+ 100 = 373
K, V1 =200 cc, Vo = 300 cc, P; = 1 atm initial pressure, Py = final pressure

Pi(Vl + Vz) = (n1 + nz)RTl
Pf(Vl) = anTl
Pf(V2) = ngRTg
Eliminating n; and n3 and solving for Py we find

p, _ BRI+ V)
I~ VT + TV,

Substituting numbers we find Py = 1.158 atm.

Problem set 2 2001. Solution

Problem 1:

a:

The heat required to warm 1 kg of water 1 degree is 1 kcal=4186 J. The
work done on 1 kg of falling water is 100%9.81 J

9.81 % 100
AT = I8 - 0.234 K
b:
The fraction of water evaporating is
9.81 % 100
——— =0.0004
4186 * 540 000043
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Problem 2:

400 -1
3nR = 3m8.315 =157J K
The answer c: is closest.
Problem 3:
a:
Initially the temperature is

PV
T=—
R
after step 1 volume is
v =27y

Ty =2t = 21*1/7% = 1.219T

after step 2

2PV
T2 - 2T - ?
after step 3 it is again
o PV
R
b:
In step 1
Q1=0
fR
Wi =U; —Uy = T(Tl —T) =0.5475PV
In step 2
Wy = —PAV =2 (2717 — 1) = —0.7810PV
Q2= AU — Wy = g(Tg —Ty) — Wy =2.7335PV
In step 3
W3 =0
R
Qs =AU = %T = 2.5PV
c:
Total work

W = (0.5475 — 0.7810 + 0) PV = —0.2335 PV

Q =(0+42.7335 — 2.5)PV = 4+0.2335 = - W
in agreement with fact that AU = 0 through cycle.
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Problem set 3 2001

Problem 1:
Substuting the given formula for the logarithm of n! into the expression for
the multiplicity function of an Einstein solid gives

In(Q(¢,N)) =(¢g+ N —-1)In(¢g+ N —-1) = (N —1)In(N — 1) — ¢qlIn(q)

—%(ln(Q *m)+In(g+ N —1) = In((N — 1)q)

Evaluating this function for the logarithm of the multiplicity function of the
compound solid
In(©2(2000, 6000)))) = 4493.82

The number of ways 1000 quanta can be distributet among 3000 oscillators
is in both solids can be evaluated from

In(£2(1000, 3000)?) = 4489.65
The probability for this is
exp(4489.65 — 449382) = 0.0155

Problem 2:

a:

With the simplified fromula

g+N g+N q q
() - L)

Substituting Nkg = 3R, (¢ + N)/N =4/3, ¢/N = 1/3 gives

S = kpIn(Q(q,N)) = Nkp|(

S = R(4ln(§) - ln(%)) = 18.70 J/K

It was shown in class that



or T
E
T=—="2K
In4
b:
Problem 3:
Assuming there are 1000 characters on a page the probability of success is

10107 1 g
1000 401000 ~

very small indeed!

Problem set 4 2001. Solution

Problem 1:
a:
Substituting
1 L
Np=—-(N+=
R 2( + l)
into g
. = NInN — NgIlnNgr — (N — Ng)In(N — Ng)
B
yields
L L L L
£ N+ N-%_ N-=
-iszN— R ey Lln L
kg 2 2 2 2
We have N N
T N+ =+ N - =
po_pd3 kT NtT L
oL |n 21 2 2

which simplifies to
B kBTl IN + L

F=—riN—1

b:

The force needed to obtain a given length increases with temperature.
Hence, when the force is constant the length decreases and the mass moves
up.

c:

oS 1
Hn = _Ta—N = k?BT(lIlN - 5 In

N+L 1 N-L
l——ln l)
2 2 2
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This can be simplified to

Problem 2:
a:
The internal energy per particle at height z is

3
U= NEkBT + mgzN

into
2 3/2
Vg = | 7/
27kaBT
and v 5
= Nkp(ln — + =
S 5(In N, + 2)
gives
B V. 4mm(U — Nmgz).3/5] 5
S(U,N,V) = Nkg (m [Nf’/?( o ) ] 4 5)
wnd 98 %
Iz 8N|U,V kg anq + mgz
b:
For the chemical potential to stay constant we must have
v v
—kgTIn ———— =— —kgT1
G (C T ()T
0 N(z) _ mgz
N(0)  kgT
or o
N(z) = N(0)exp kB;

For fixed T,V the pressure is proportional to IV so

—mgz
kT

P(z) = P(0)exp
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c:
At ground level

V (2rmkpT)>/?
n= —kBTln—q = —kgTIn NB
8;1, _ V 3kB
a7 ViV kpln N, 5 0

since under atmospheric conditions V/N >> v,.

Thus, if the temperature decreases, N,V being constant, the chemical po-
tential will increase!

d:

For the chemical potential to stay the same, if the temperature decreases
as the altitude increases, the density has to decrease even more than pre-
dicted by the barometric formula in c:. Thus, the barometric formula over-
estimates the pressure at high altitudes!

Problem set 5 2001

Problem 1:
a: We have
du=dQ+dW

Substituting dQ = CydT and dW = —PdV gives

dQ = PdV + CydT

b:
From P p
P=P+(V-V)—=2—1

1+ ( 1)V2_V1
we have along the straight line in the PV diagram

dP P, - P

v Va-W;
and 5 5

CydT = ianT = E(VdP + PdV)

We find
aQ 7 5. dP 7 V-W 5 V
—=—_P+4+-V— =_(P, P, — P = P, — P;
av — 2t T ay Tt (R s Rl sy (R P
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For V close to V1, d@Q/dV will be negative. Since the gas is being compressed
d@ > 0, i.e. the gas will be heated. Ath the other end the gas will be giving
up heat. Putting d @ = in the above expression gives

7T PV — Py
Vs=——F——7—
12 P —P
c:
We have
dr dP P,-P P-P
R—=P+V—=P V-V |4
"Ry =PV = VgtV Ty,
This expression is zero for
1PV, - V1P
V=2
2 P-P
Substituting
1
Vlzl; V2:§; Plzl; P2:2
gives

Vs = gLiteI‘

3
V4 = Z Liter

i.e the heat flow does not change sign when the temperature is
the maximum.

Problem 2:
a:
Qu =nCy (T3 — T»)
b:
Qc =nCy(Ty —T1)
c:
W =Qmu — Qc
d: Substituting
Cp
=—=14
Y Cy
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T, =300 K, T» = 554 K, T = 754 K, Ty = 360 K. into

o Qu—-Qc _, Qc
Qu Qu
yields
e =58%

Problem set 6 2001. Solution

Problem 1:
Let V7 be the volume of the bottom partition. The Helmholtz free energy
of the system is

4 V-

F = —NkgT|l 1 2
B [anqun No, + 2]+

mgVy

(a). The equilibrium height of the piston minimizes the free energy. We
differentiate the free energy with respect to V

_OF _ NkgT  NkpT  mgVi

0= — =
oVi Vi V-2 A

This equation could also be written down directly by noting that the pressure
in the bottom partition is equal to the upper pressure +mg/A. Define

N
o= NksTA
mg
We find
A "
i v-wvi T
or

VE—-Vi(V+20)+CV =0

With solution

2 2
_rH0 Y ey

i 2 4

On physical grounds only the negative root is acceptable (the positive root
gives rise to a negative volume for the upper partition). Substituting

=7
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for the height and the value of C

h

Vv +NkBT (V)2 VNEkgT
24 mg 2A mgA
(b). Since the top partition is at the vapor pressure, the pressure in the

lower pressure will exceed the vapor pressure. Hence the lower partition
contains only liquid.

Problem 2:
- N
F(N,V,T) = —NkpT{ln [V b +1}
Vq
where
_ constant
Ve = T5/2

and b is another positive constant.
a:
The pressure as a function of volume and temperature is thus

P OF  NkgT
9T V —Nb
b:
The chemical potential is
oF V—-Nb bNkgT
=— = —kgTl
T A R T
c:
We have for a given N and T
ov NkgT
ap - p 0

Since the pressure decreases monotonically with the volume, there can be
no co-existing phases = there can be no phase transition!

Problem 3:

We have

V — Ngbs — Npbp
(Na+ Np)vy,

F(N4,Ng,V,T) = —(N4 + Np)kpT{ln +1}
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where b4 and bp are positive constants and as before

_ constant
Vg = T5/2
OF _ (Na+ Np)kgT

p=_2" —
oV V — Nybsy — NgBbpg

Solving for V gives

(Ng+ Np)kpT

V = Naba + NpBbp + P

b: The entropy is

oF
S = _a_T = (NA+NB)]€B{1D [

V — Ngbsg — Npbp
(Na + NB)y,

Ovg 1
0T vq

+1+(Na+Ng)kpT

which simplifies to

V — Nabs — Npbp
(NA +NB)’Uq

(NA+NB)kB{ln [ —|—7/2}

Problem set 7 2001. Solution

Problem 1:
The partition function for the system is

Z =1 — exp(—phw)] N

_10Z  Nhwexp(—phw)
<U>= Z OB 1—exp(—Bhw)

which can be simplified to

Nhw
U (Bt 1
2 198°Z  N(hw)*(N + exp(Bhw))
U= 208 T (ew(Bhw) - 12
Hence
N (hw)? exp(Bhw)

<U?>—-<U>%=

(exp(Bhw) — 1)

50



b:Using the formula for the specific heat

N(hw)?  exp(2

C—
kpT? (exp(k T) )

c: The alternate way to calculate the specific heat is

oU 9BO<U> (Nhw)? exp(4)

c=7-=L =
oT — 8T 9p kBT? (exp(£%) —1)2

which agrees with the result in b:
Problem 2:The oxygen and nitrogen concentrations at height h are given
by

O2(h) = O2(0) exp(—Bmozgh); N2(h) = N2(0) exp(—pmnagh)

The ratio is thus

Ox(h) 1 gh(my2 — mo2)

No(h) — 1 %P o

Substituting moz = 32 * 1.67 * 10727 kg, my2 = 28 % 1.67 * 10727,
T =273 K, kg =1.381 x 10723 J/K, g = 9.81 m/s? gives

O2(h)

= 0.229
No(h)

Problem 3:If the two particles are in states with different labels the energy
is zero and there are 6 such states. There are three states with energy —e.
a: The partittion function of the system is

Z =6 + 3exp(fe)

b: The mean energy of the system is

—3eexp(fBe)

U>= __-c=2DAPC)
R 6 + 3exp(Be)

c: The free energy is

F=—kpTlnZ = —kpTIn(6 + 3exp(—=))

kBT
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The entropy of the system is

oF € €
S=-2 _kpln(6+3
or ~ kel + eXp(kBT))+T(2exp(—k;T)+1)
d: AsT =0
exp(——) = 00; In(6 + 3exp(——)) — In(3) + ——; exp(—=) — 0
P esT ’ PUaT kpT' CP\LLT

and

€ €
S—>kln(3)+T 7 =k1In(3)

This agrees with the fact that the lowest energy state has multiplicity = 3.
AsT —

€ € —€
exp(kB—T) — 1; exp(—kB—T) —1; T(2 exp(kB—T) +1) = oo;

and
S — kIn(9)

At high temperatures all states are equally likely and there are 9 available
states!

Problem set 8 2001. Solution

Problem 1:
For an ideal gas

f
= =Nkp = —
Cv =35k =7
Substituting into the formula for the enrgy variance gives

<U?’>—<U>%= gpchT

or
/ 4
o= gpchT = \/2105 X ?”10*9 x 1.38 x 1023 x 300 = 2.08 x 10" 2J

The internal energy is

—NkgT =PV == x 10°=—1 =1 1
5 kg 5 1% 2>< 0 3 0 05 x 107 °J
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giving for the ratio
o

— =2x107"°
Problem 2:
a: Substituting
c(V — Nb)T5/? N?
F=_-NkgTlh——7~ 41l —a—
kgT[ln N +1]—a v
into
P__a_F| _ NkgT  aN?
T TN Ty Ny v
Gives
c(V — Nb)T5/? aN? NVkgT aN?
G=F+PV=—NkgT[lhn——"— 4+1]— -
* 5Tl N I I T
which can be simplified to
B c(V — Nb)T5/? N2b 2a.N?
G = —NkgTln ~ - g -
b:
We have
OF c(V — Nb)T5/? NbkgT N
= =kgT[h— 2~ 1] — — kT — 20—
=gy = keTln N U=y kT 2y

which after some simplification yields

c(V — Nb)T5/? N2%b N?
G = Np= —NkgT1 - kpT — 20—
a pr N 7 A 7

which is the same result as before
c: With

1
b= kT
B ck3*(V — Nb) BN?
ﬂF——N[an—l—I]— T

The internal energy U is given by
0Z OBF 5N  N?

“ Tz a8 28 ‘v
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or )
N
U= gNk:BT —a—

Problem 3
a:
The work in expanding the vapor is

PV =nRT
The molecular weight of water is 18g so 1kg water contains
n = 1000/18 = 55.55mol
The work is then
55.55 x 8.31 x 373/4.18 = 41.2kCal

which is 41.2/540 = 7.62% of the total.
b: From the Clausius Clapeyron equation

AP L
AT~ TV
A APVT _ APnRT? _ 55.55 x 8.31 x 373 58 5°C
L PL 2 x 540 x 4.18 x 1000
Problem 4:
The coeflicient of performance of the heat pump is
Qu Ty 273 4+ 80
CcOoP On — Oc < To - T 20 4.41

So the heat pump would use 4.4 times less heat (but it would cost more to
install!).
Problem 5:

The excess Gibbs free energy of the droplet is 0 A = 4072, The number of
molecules in the droplet is with  in meters noting that there 1 m® of water
has a mass of 10% g (or contains 55 555 mol of water)

4mr3 N 410°
3 x 18
so the excess free energy per particle is
o 3 % 0.073

=0.655 x 107237

3 =
r x 55555 x Ny 1076 x 55 555 x 6.022 x 1023

which is small compared to

kT = 0.404 x 107207
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2001 Exams

Midterm October 10 2001. Solution
Problem 1:

The initial and final volumes on the right side are
_ RT:,
=5

_ R,
- o

Vri Ves

Py = 2P; = 2 bar
b: The left volume is after the compression

3
VleEVi

The temperature on the left side is thus

_ BVis

Tif 7

=3T; =900 K

c:The work done on the right chamber is

Vis Vii
W:—/ PdV = RT;1In =1729 J
Vii Vrf

d:
On the left side

)
QL=W+AU, =W + ER(Trf — TM') = 14.2 kJ

On the right side
Qr=-W =-1729]

Problem 2:
V (2rmkgT\*?] 5
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a:
If P = 2P and V is unchanged, T' = 2T. Hence

AS:%RlnS

b: If P = 2P and T is unchanged, V = V/2. Hence

AS =-nRIn2
Problem 3:
At the Einstein temperature the expected number of quanta is
N
1= e—1

Substitute into the formula for the entropy
S =kp[(N+q)In(N+¢)— NInN —¢glng]

Using
In(N +g) = In(1 + ) + In(N)

The entropy per oscillator is then

—1In(e — 1))

N N N N N

s= 2 —ky ((l+i)1n(1+i)—ilni> =kp(-—

plugging in numbers we find

s =1.04 kp

Second midterm November 5 2001. Solution.

Problem 1:
a:
The working substance absorbs heat when expanding at constant pressure

Qu =Cp(T3 — T3)

The heat expelled is
Qc = Cp(Ty — T1)

56



We have for the thermodynamic efficiency

_ W _Qm- Qc_l_T4—T1

Qu Qu T3 — Ty

b: During an adiabatic process

PV7 = const
Using the ideal gas law PV = nRT we find

P77 = Const

Hence
3 " =(3)=(R)
P, \nn) \1y
or
Ty, T3
T, T

Substituting into the formula for the efficiency

. _
e:l—ﬁ_l 1_521_<i>(7 D/
%—1 Ty Py

2

c: Substituting Py = 1 bar, P, = 8 bar, v = 1.4 gives

1

Problem 2:

Cy = %R, Cp = %R.The entropy of one mol of argon at 298 K was given
as 154.84 J/K and AT =4 K.

a: The change in energy is

AU =CyAT =499

b: The change in entropy is

f
AS = / 1Q _ CrAT _ 5 J/K

average
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c: The change in enthalpy is
AH =CpAT =83.15J

AG = -SAT = —619]

Problem 3:

a:

The heat given up by the hot water is equal to the heat gained by the cold
water. Let T be the final temperature of the mixture

10(90 — T) = 6(T — 10)

giving T = 60°C.
b: The initial temperatures and the final temperature measured in Kelvin
are,respectively 363 K, 283 K and 333 K

333 4T 333 4T
AS:MlcP/ —+M20p/ — =
363 1 363 T

333 333
+6 x 41801nﬁ =475 J/K

1 41801n —
0 x 80n363

Sessional exam, December 13 2001, Solution

Problem 1:
a:
For a diatomic gas we expect Cp for a mole to be close to

;R =29.10J K71

So Cp =29.38 JK ! is most likely to be correct.

b: If the gas is heated at constant pressure, it will expand, and will have to
do work against the outside pressure to do this. This means that more heat
will have to be provided than if the gas is heated at constant volume.

Problem 2:

_ ™V
45334
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where 8 = 1/kT, c is the speed of light and % is Planck’s constant divided
by 2.
a: The entropy is

oF 08 OF 1 472V B AnVEET?

S = — — = - = =
oT |y OT 93  kpT? 45h%c3 35 45R3¢3

The pressure is

p_ _8_F _ 7r2k}13T4
OV 45R3c3
b: The internal energy is
(-1 +4)nVkET*  7VEET*
" 45h3c3 15h°¢3
The enthalpy is
AnVEkyT*
H=U+PV=—"—-5"
45h3c3
c: -
G H_TS— (4 —-4)nVkgT _ 0

45h°%c3
The number of photons will be fluctuating. At equilibrium the expected
number < N > of photons is given by the condition that < N > minimizes
the free energy

Problem 3:
a: We have
p_ nRT B a_n2
V-nb V2
Giving

f Ve —nb 1 1
f 2
W =— PdV = —nRT1 — —— — =
/i " n(Vi—nb> o (Vf Vi)

Substituting n = 0.2 mole, V; = 1073 m?, Vi = 1074 m3, a = 0.5 J m?,
T =500 K, b=3x10"° m® mole !, R =8.315 J mole"1 K1 gives

W = 1961 — 180 = 1781J
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b: In an ideal gas the internal energy is independent of the density of the
gas and depends only on the temperature. The first law then requires that
for an isothermal proces

0=AU = AW + AQ

from which it follows that the work done in compressing the gas equals to
the heat expelled. For the imperfect gas

AU #0
and the magnitudes of heat and work will be different.

Problem 4:
i From the Clausius-Clapeyron equation

_ PTAV
L

dr

Consider 1 kg chunk of lead. Let pr and pg be the density of liquid and
solid lead, respectively. The volume increases upon melting by

1 1
AV = — — —
PL  PS
Substituting numbers
99 x 10° x (327 +273) x 107* (13 — 1357)
dT = 1.065 1.1017 __ 07440
24500

At higher pressure more work is required for the expansion at melting.
Hence, the melting temperature increases.

Problem 5:
a:We have

Qn 1
COP = — =
'/‘/ 1 _ Qc
Qn

The entropy loss of the outside must be less than the entropy gain inside for
the total entropy not decrease.

O

c<%
=7

C

!
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from which it follows that

T
c h
or
1
COP < —
T,

b: We have (assuming ideal performance)

W*Th
Th_Tc

Qr=ax* (T, —T.)=COPxW =
we get a quadratic equation for T, with solution

w W W2
Ty, =T, — 4 — + —
h C+2a a+4a2

Assuming that T > T, we must choose the positive root.

2000 Exams

The problem sets assigned that year were from the text by Schroeder and
are not included here.
First midterm 2000. Solution.

Problem 1:
Subscript t,b =top, bottom. In all cases the bubble satisfies the ideal gas
law

PV =nRT

a:
If the bubble rises at constant temperature

P
wathm:wsz”zﬁmmi"
t

b:
If the bubble rises adiabatically

BV, = PV,
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From this we find P
= V= Vb(?b)lm = 3.6 mm®
t

c:
Heat is supplied to the isothermal bubble and not to the adiabatic one.
Hence, the former is warmer and thus bigger.
d:
S =constant for an adiabatic process. From the Sackur Tetrode law for the
entropy

= — = const

vQ

3/2 and using the ideal gas law

Since vg o< T

= VT3/2 = const = V5/2P3/2 = const. = PV5/3 = const

Hence
=v=5/3
Problem 2:
43 whd?
V == ==
B B 3 1
a:
[ 31673
d=
3h
b
d=0.123 mm
c:

The volume of the bulb is 4773/3 = 21 mm3. Assuming a 10 cm column its
volume is 100md?/4 = 0.4 mm3, which is much smaller than the volume of
the bulb.
Problem 3:
The mass of the balloon plus the mass of the hot air must be less than the
mass of the displaced air for the balloon to rise.
a:

mPV ~ mPV

M+ — =
+ RTy RT¢
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1
Ty =

1 _ _RM
Tc ~ mPV
b: Substituting numbers gives T=366 K
c:
Subtract the mass
mPVp
RT¢

of the air displaced by the payload from the mass M to get the effective
pay-load.

Second midterm 2000. Solution.

Problem 1:
a:
Applying Stirling’s formula and S = kg InQ to

(N+q-1)
g'(N —1)!

gives
S=kp{(N+¢—1)In(N+¢q) —gqlng— (N —1)in(N - 1)}
Since N >> 1, we can approximate this as

S =kp[(N+q)In(N +¢) —glng— NInN]

b:
We need to express S as a function of U and N
U U U U
S = kB{(N+ E)ID(N—F ﬂ) — ﬂln% —NIIIN}
giving
1 9SS kg Nhw
T he D)
and Py u
p_ 90 _
A R G T
and finally

T hw _
kplIn(1+ =5*)

63



and
hwln(1 + 55-)

In(1 + YA

p=—
c: when

hw
kB
1=1In(1+1/q)

N

e—1
Substituting into formula for S, there is a common factor of Nkp and we
find

T

q:

S

=—=1.04
° 7 Nkg
Problem 2:
The quantities s;(T) and vg(T) in the expression
%4 5
= Ns;(T)+ Nkp[ln ———~ + =
S si(T) + B[anq(T) + 2]

do not change during the processes under consideration. We have Nakp = R
a:
The initial entropy is

Vi 5 Vi 5
i = 2N 48 He(T)+2N gkplln ——————————+ |4+ N4s8;02(T)+Ngkplln ————+—
S, ASi H ( )+ A B[ n 2NAUq,He(T)+2]+ AS 702( )+ A B[ n NAUq,02(T)+2]
The final entropy is
2V; 5 2V; 5
S¢=2Nas; me(T)+2Nakp[ln ———————+ |4+ N4s; 02(T)+Nakp[ln —————+-]

2N Avg He(T) 2 Navg,02(T) 2

The change in entropy is thus

AS =S8y~ 8 =3Nskpln2=3RIn2

AS = —-3NgkgIn2 = —-3RIn?2
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c:
The initial entropy is now
Vi Vi 5

5
Si = 2Nasi ge(T)+2Nakp[ln ——————+ |+ Nas; ge(T)+Nakp[ln —————+—
: a8iHe(T)+2Na B[n2NAvq,He(T)+2]+ a8ie(T)+Na B[nNAvque(T)—i_?]

while the final entropy is

2V; 5
= 3Nas;. mge(T Nykpg[lln ————— + =
Sp=3 AS,H( )+ 3N4 B[n3NAUq,He(T)+2]
giving
32
AS=Rln—
"o7

note that while there is no longer an entropy change due to mixing, there is
an entropy change to equalize the pressure!

Sessional Examination, December 2000, Solution

1:
a:
Since Cy = Cp — R and
I=3&

f=2%(29.38 — 8.315)/8.315 = 5.067

b:
O5 at room temperature is a diatomic gas. Hence we expect 3 translational
and 2 rotational degrees of freedom i.e. f = 5. The very slight excess means
that the vibrational degrees of freedom are almost completely frozen in.
c: For CHy

f=2x%(35.31 —8.315)/8.315 = 6.49

With 3 rotational 3 translational degrees of freedom we would expect f = 6,
the excess means that the vibrational energies are not completely frozen in
at room temperature.

2:
a:

V [2rmkT\>/?
Potd = —kT In lﬁ (T)
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After half the molecules have been pumped out

2V (277ka> 3/2]

Pnew = —kT In [W T

Hence the change is

Ap = pinew — prota = —kT'In2

?he change is now
Ap = —2kTpq1n [%(2%1(1)5’/ 2] +kTpq1n l%] = —BkTyq1n2—kT,qln l%]
or
Ap = —2kTy41n lw]
c:

If p = 1/2 we must have exp(e — u/kT) = 1. Since Ay = —kT' In2 we must

have
B 1 11
P=en—am/AiT 11~ 241 3

It doesn’t matter if the gas is monatomic or diatomic.

3:
a:
From the van der Waals equation we have

PV _, aN +abN2+P_b
NkT VKT V2T kT

Substitute the critical values

PV, 27 27 1 3
CF=-—-"t°%—-1- —===.375
NET, 3><8+8><9+8 8

Alternatively, we can substitute directly into the expressions for the critical
quantities
P.Ve  37z(3ND)

NkT, N

3
8
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b:
We have

NkT, CF T, B
Vo = CFx=—2=< = ¢ XPR X e _ 974 % 8.315 x 647220.6 x 10° = 66.8x10 Om3
o

When fitting to T, P. we have to solve

2
a=27*P,, a = gkac

for a and b giving
_2TR*TE kT
~ 64P, ' 8P,

using k = R/N, and the provided values for the constants gives

a=153x10"8Nm?* b:=5.06 x 1072m?

When fitting P., V., we have

Ve

=3.70 x 1072m?
3N, X m

b=

giving
a=276P, = 8.13 x 10 ¥ Nm*
The discrepancy between the two fits suggests that the van der Waals model

of a fluid only offers a qualitative description and is not particularly good
for a quantitative theory.

4:
a:
The voltage of a battery containing n cells

nAG 6 x 394 x 1000

= = 12.27 Volt
2eN,  6.022 x 10?3 x 2 x 1.602 x 10~19 0

V=-—

b:
The heat absorbed by the battery per formula unit per mole is

TAS=AH -AG >0

Since the battery absorbs heat when discharged, waste heat is produced
when battery is charged.
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Since NG AH — AG
or - AT
AH — AG
AV — TLATW ~ 02V

The voltage increases when heated!

5:
a:
Under ideal operating conditions

ThASL = Qp; TAS. = —Q¢, Qn — Q. =W; AS, +AS. =0

T,
Th - Tc

COP = Qu/W =

b:

The energy required is 1/COP = (T, — T.)/T, = 0.068 kWh if it is 0°C
outside. If it is —40°C the cost would be 60/293 = 0.20kWh

c:

For the air conditioner the COP would be Q./W = T./(Ty — T.) = 293/15.
So the energy cost would be 15/293 = 0.051kW h under ideal circumstances.
Of course, ideal circumstances cannot be achieved, but if energy prices keep
going up, heat pumps may turn out to be a good idea!
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