{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "" -1 256 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal " -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT 256 0 "" }{TEXT -1 54 "PHYS 312 :\nSOLUTIONS TO PROBLEMS\nSect 5.7\nProblem 5.7:1" }}{PARA 0 "" 0 "" {TEXT -1 1099 "\n\\n\{\\bf Problem 2:\}\\\\\n\{\\bf a:\}\\\\\nWe subst itute\n\\[u(r,t)=t^\{b\}\\exp(-ar^2/t)\\]\ninto the two dimensional he at equation in polar coordinates.\n\\[\\nabla^2u-\\frac\{\\pa u\}\{k\\ pa t\}=(\\frac\{1\}\{r\}\\frac\{\\pa \}\{\\pa r\}r\\frac\{\\pa\}\{\\pa r\}-\\frac\{\\pa\}\{k\\pa t\})\nt^b\\exp(\\frac\{-ar^2\}\{t\})\\]\\[= \\frac\{1\}\{r\}\\frac\{\\pa \}\{\\pa r\}(-2ar^2t^\{b-1\}\\exp(-ar^2/t ))-(\\frac\{ar^2t^\{b-2\}\}\{k\}\n+\\frac\{bt^\{b-1\}\}\{k\})\\exp(-ar ^2/t)\\]\n\\[=(-4at^\{b-1\}+4a^2r^2t^\{b-2\}-\\frac\{ar^2t^\{b-2\}\}\{ k\}\n-\\frac\{bt^\{b-1\}\}\{k\})\\exp(-ar^2/t)\\]\nFor this expression to be zero we must have\n\\[a=\\frac\{1\}\{4k\},\\;\\;b=-1\\]\n\{\\bf b:\}\\\\\nWe again substitute\n\\[u(r,t)=t^\{b\}\\exp(-ar^2/t)\\]\nno w into the three dimensional heat equation in polar coordinates.\n\\[ \\nabla^2u-\\frac\{\\pa u\}\{k\\pa t\}=(\\frac\{1\}\{r^2\}\\frac\{\\pa \}\{\\pa r\}r^2\\frac\{\\pa\}\{\\pa r\}-\\frac\{\\pa\}\{k\\pa t\})\nt ^b\\exp(\\frac\{-ar^2\}\{t\})\\]\\[=\\frac\{1\}\{r^2\}\\frac\{\\pa \} \{\\pa r\}(-2ar^3t^\{b-1\}\\exp(-ar^2/t))-(\\frac\{ar^2t^\{b-2\}\}\{k \}\n+\\frac\{bt^\{b-1\}\}\{k\})\\exp(-ar^2/t)\\]\n\\[=(-6at^\{b-1\}+4a ^2r^2t^\{b-2\}-\\frac\{ar^2t^\{b-2\}\}\{k\}\n-\\frac\{bt^\{b-1\}\}\{k \})\\exp(-ar^2/t)\\]\nFor this expression to be zero we must have\n\\[ a=\\frac\{1\}\{4k\},\\;\\;b=-\\frac\{3\}\{2\}\\]\n\n" }{TEXT 257 13 "P roblem 5.7:2" }}{PARA 0 "" 0 "" {TEXT -1 1367 "\\n\{\\bf Problem 3\}\\ \\\n\{\\bf a:\}\\\\\n\\[\\nabla^2u(r,t)-\\frac\{1\}\{c^2\}\\frac\{\\pa ^2u(r,t)\}\{\\pa t^2\}\n=\\frac\{1\}\{r^2\}\\frac\{\\pa\}\{\\pa r\}r^2 \\frac\{\\pa u\}\{\\pa r\}-\n\\frac\{1\}\{c^2\}\\frac\{\\pa^2u(r,t)\} \{\\pa t^2\}=0\\]\n\\[u=\\rho(r)\\tau(t)\\]\n\\[\\frac\{1\}\{\\rho r^2 \}\\frac\{d\}\{dr\}(r^2\\frac\{d\\rho\}\{dr\})=\\frac\{1\}\{c^2\\tau\} \\frac\{d^2\\tau\}\{dt^2\}=-\\lambda^2\\]\n\\[\\tau=A_\\lambda\\sin(\\ lambda ct)+B_\\lambda\\cos(\\lambda ct)\\]\nFrom \\htmladdnormallink\{ lecture 27\}\{../p312l23/index.html\} we know that the solution to t he radial equation\nwhich remains finite as $r\\rightarrow 0$ are prop ortional to\n\\[\\frac\{\\sin(\\lambda r)\}\{r\}\\]\nFor\n\\[u(R,t)=0 \\]\nwe must have \n\\[\\lambda=\\frac\{n\\pi\}\{R\}\\]\nwhere $n$ is \+ an integer. So we have\n\\[u(r,t)=\\sum_\{n=1\}^\\infty\\frac\{\\sin\\ frac\{n\\pi r\}\{R\}\}\{r\}(A_n\\cos\\frac\{n\\pi ct\}\{R\}+B_n\\sin\\ frac\{n\\pi ct\}\{R\})\\]\n\{\\bf b:\}\\\\\nSubstituting \n\\[u(r,t)= \\frac\{1\}\{r\}(\\phi(r-ct)+\\psi(r+ct))\\]\ninto $\\nabla^2u$\n\\[\\ frac\{1\}\{r^2\}\\frac\{\\pa\}\{\\pa r\}r^2\\frac\{\\pa u\}\{\\pa r\}= \\frac\{1\}\{r^2\}\\frac\{d\}\{dr\}r^2(-\\frac\{\\phi+\\psi\}\{r^2\}+ \\frac\{\\phi^\\prime+\\psi^\\prime\}\{r\}\n)=\\frac\{1\}\{r\}(\\phi^ \{\\prime\\prime\}-\n\\psi^\{\\prime\\prime\})\\]\nwhile \n\\[\\frac\{ \\pa^2 u\}\{c^2\\pa t^2\}=\\frac\{1\}\{r\}(\\phi^\{\\prime\\prime\}-\n \\psi^\{\\prime\\prime\})\\]\nSince the two expressions agree the equa tion is satisfied.\\\\\n\{\\bf c:\}\\\\\nWe must have\n\\[\\phi(ct)=- \\psi(-ct)\\]\nso the solution must be on the form\n\\[u(r,t)=\\frac\{ 1\}\{r\}(\\psi(ct+r)-\\psi(ct-r))\\]\n\\vspace\{0.5cm\}\n\n" }}}} {MARK "0 1 1" 13 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }