{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "" -1 256 "" 1 14 0 0 0 0 0 1 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT 256 0 "" }{TEXT -1 54 "PHYS 312 :\nSOLUTIONS TO PROBLEMS\nSect 5.1\nProblem 5.1:1" }}{PARA 0 "" 0 "" {TEXT -1 3877 "\\n \{\\bf Problem 1:\}\\\\\n\{\\bf a:\}\\\\\nIf $x=L\\ theta$ represents distances along the perimeter of the ring the\ndiffe rential equation is\n\\[\\frac\{\\pa^2 T\}\{\\pa x^2\}=\\frac\{1\}\{k \}\\frac\{\\pa T\}\{\\pa t\}\\]\nIn terms of the angle $\\theta$ the d ifferential equation becomes\n\\[\\frac\{\\pa^2 T\}\{\\pa \\theta^2\}= \\frac\{L^2\}\{k\}\\frac\{\\pa T\}\{\\pa t\}\\]\nSeparating the variab les\n\\[T(\\theta,t)=\\phi(\\theta)\\tau(t)\\]\nwe find \n\\[\\tau^\\p rime=-\\frac\{k^2\\lambda^2\}\{L^2\}\\tau\\]\n\\[\\phi^\{\\prime\\prim e\}+\\lambda^2\\phi=0\\]\nThe general solution to the equation for $\\ phi$ is \n\\[\\phi=A\\cos(\\lambda\\theta)+B\\sin(\\lambda\\theta)\\] \nIf the angle is incremented by $2\\pi$ we are back were we started, \nhence $\\lambda=n=$ integer or zero. The solution for $\\tau$ is\n\\ [\\tau=const\\exp(-\\frac\{kn^2t\}\{L^2\})\\]\nThe solution to the pro blem can thus be expressed on the\nFourier series form\n\\[T(\\theta,t )=A_0+\\sum_\{n=0\}^\\infty\n\\exp(-\\frac\{kn^2t\}\{L^2\})(A_n\\cos(n \\theta)+B_n\\sin(n\\theta))\\]\nwhere\n\\[A_0=\\frac\{1\}\{2\\pi\}\\i nt_0^\{2\\pi\}d\\theta f(\\theta)\\]\n\\[A_n=\\frac\{1\}\{\\pi\}\\int_ 0^\{2\\pi\}d\\theta f(\\theta)\\cos(n\\theta)\\]\n\\[B_n=\\frac\{1\}\{ \\pi\}\\int_0^\{2\\pi\}d\\theta f(\\theta)\\sin(n\\theta)\\]\n\{\\bf b \}\\\\\nIn this case $\\cos\\theta$ is an eigenfunction with eigenvalu e $\\lambda=n=1$\nHence we put $A_n=0$ for $n\\neq 1$ and $B_n=0$ for \+ all $n$\n\\[T(\\theta,t)=T_0\\exp(-\\frac\{kt\}\{L^2\})\\cos\\theta\\] \nThe time it takes for the temperature difference between the hottest \nand coldest spot to halve is thus\n\\[t_\{1/2\}=\\frac\{L^2\}\{k\} \\ln 2\\]\n\\n \{\\bf Problem 2:\}\\\\\nThe general solution to the 2 -dimensional Laplace equation \n\\[\\nabla^2u(r,\\theta)=0\\]\nin pola r coordinates is\n\\[u=a+b\\ln r +\\sum_\{n=1\}^\\infty(a_n\\cos(n\\th eta)+b_n\\sin(n\\theta))\n(\\frac\{\\alpha_n\}\{r^n\}+\\beta r^n)\\]\n Because of the \n boundary conditions \n\\[u(a,\\theta)=\\cos\\theta; \\;u(2a,\\theta)=\\cos\\theta\\]\nonly the cosine term with $n=1$ will contribute to the solution so we can write\n\\[u=(\\frac\{\\alpha\}\{ r\}+\\beta r)\\cos\\theta\\]\nSubstituting for the conditions at $r=a$ and $r=2a$ we \nfind\n\\[\\frac\{\\alpha\}\{a\}+\\beta a=1\\]\n\\[\\f rac\{\\alpha\}\{2a\}+\\beta 2a=1\\]\nwe find \n\\[\\alpha=2a/3, \\beta =1/(3a)\\]\n and\n\\[u(r)=\\frac\{2a\}\{3r\}+\\frac\{r\}\{3a\}\\]\n\\v space\{0.5cm\}\n\n\\n \{\\bf Problem 3:\}\\\\\nThe differential equati on\n\\[\\nabla^2u=1\\]\nbecomes in spherical coordinates\n\\[\\frac\{1 \}\{r^2\}\\frac\{\\pa\}\{\\pa r\}(r^2\\frac\{\\pa u\}\{\\pa r\})+\n\\f rac\{1\}\{r^2\\sin\\theta\}\\frac\{\\pa\}\{\\pa\\theta\}(\\sin\\theta \\frac\{\\pa u\}\{\\pa\\theta\})+\\frac\{1\}\{r^2\\sin^2\\theta\}\\fra c\{\\pa^2 u\}\{\\pa\\phi^2\}=\n1\\]\nThe boundary conditions are such \+ that $u$ does not depend on either \n$\\phi$ nor $\\theta$. The differ ential equation then simplifies to\n\\[\\frac\{1\}\{r^2\}\\frac\{d\}\{ d r\}(r^2\\frac\{d u\}\{d r\})=1\\]\nThe general solution to the homog eneous equation\n\\[\\frac\{d\}\{d r\}(r^2\\frac\{d u\}\{d r\})=0\\]\n is\n\\[u_h=\\frac\{c\}\{r\}+b\\]\nwhere $c$ and $b$ are constants. We \+ require that $u$ is bounded \nat $r=0$ hence $c=0$. We must add to the homogeneous solution a particular solution to the inhomogeneous \nequ ation. It was suggested to try a solution on the form\n$u=ar^2$. Subst ituting into the differential equation\ngives\n\\[\\frac\{1\}\{r^2\}\\ frac\{d\}\{\\d r\}(r^22br)=6a=1\\]\nGiving $a=1/6)$\nThe boundary cond ition \n\\[u(1,\\theta,\\phi)=0\\]\ngives $b=1/6$ Hence\n\\[u(r)=(r^2- 1)/6\\]\n\n\n\\n \{\\bf Problem 4:\}\\\\\n\{\\bf a:\} \n\\[\\frac\{1\} \{r\}\\frac\{\\pa\}\{\\pa r\}(r\\frac\{\\pa u\}\{\\pa r\})=\\frac\{r\} \{r\}\\frac\{\\pa^2u\}\{\\pa r^2\}+\\frac\{1\}\{r\}\\frac\{\\pa r\}\{ \\pa r\}\\frac\{\\pa u\}\{\\pa r\}=\\frac\{\\pa^2u\}\{\\pa r^2\}+\\fra c\{1\}\{r\}\\frac\{\\pa u\}\{\\pa r\}\\]\nq.e.d.\\\\\n\{\\bf b:\} If\n \\[\\nabla^2u=\\frac\{1\}\{r\}\\frac\{d\}\{d r\}(r\\frac\{du\}\{d r\}) = f(r)\\]\nwe have a particular solution\n\\[r\\frac\{du\}\{dr\}=\\int _b^\{r\}r_2dr_2f(r_2)\\]\n\\[u(r)=\\int_a^r\\frac\{dr_1\}\{r_1\}\\int_ b^\{r_1\}dr_2\\;r_2f(r_2)\\]\nfor any value of the lower limits of int egration $a$ and $b$.\\\\\n\{\\bf c:\} Since the boundary condition is given for $r=0$ we choose $a=b=0$\n\\[u(r)=\\int_0^r\\frac\{dr_1\}\{r _1\}\\int_0^\{r_1\}dr_2\\;r_2f(r_2)+u(0)\\]\nWith\n$f(r)=1;\\;u(0)=0$ \+ we find\n\\[u(r)=\\frac\{r^2\}\{4\}\\]\n\n\\vspace\{0.5cm\}\n\n\\vspac e\{0.5cm\}\n\n" }}}}{MARK "0 1 0" 3160 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }