(about) Polarons

Polaron: if an object (electron, hole, exciton, ...) interacts with bosons (phonons, magnons, electron-hole pairs, etc) from its environment and becomes "dressed" by a cloud of such excitations, the composite object is a polaron.

Today: I will only discuss cases with a single polaron in the system (avoids complications regarding polaron-polaron interactions, etc, although of course those are very interesting, too).

Plan: -- quick review of Green's functions (what we want to calculate)
-- a couple of simple examples that can be solved exactly
-- in-depth discussion of the Holstein model
-- some of the many possible generalizations

Quantity of interest: the Green's function or propagator

$$
\begin{array}{r}
H|1, k, \alpha\rangle=E_{1, k, \alpha}|1, k, \alpha\rangle \quad \leftarrow \text { eigenenergies and eigenfunctions (1 electron, total momentum } \\
\mathrm{k}, \alpha \text { is collection of other needed quantum numbers) }
\end{array}
$$

$G(k, \omega) \triangleq\langle 0| c_{k} \frac{1}{\omega-H+i \eta} c_{k}^{+}|0\rangle=\sum_{\alpha} \frac{Z_{1, k, \alpha}}{\omega-E_{1, k, \alpha}+i \eta}$

$$
\left.Z_{1, k, \alpha}=\left|\langle 1, k, \alpha| c_{k}^{+}\right| 0\right\rangle\left.\right|^{2}
$$

$A(k, \omega) \triangleq-\frac{1}{\pi} \operatorname{Im} G(k, \omega)=\sum_{\alpha} Z_{1, k, \alpha} \delta\left(\omega-E_{1, k, \alpha}\right)$

$\mathrm{Z}=$ quasiparticle weight \rightarrow measures how similar is the true wavefunction to a non-interacting (free electron, no bosons) wavefunction

Simplest 1-site model: analog of the Franck-Condon problem

new equilibrium length, determined by how many extra electrons there are
$h=\Omega b^{\dagger} b+g \hat{n}\left(b^{\dagger}+b\right) \underset{\nrightarrow}{\rightarrow} b^{\dagger} b+g\left(b^{\dagger}+b\right)=\Omega B^{\dagger} B-\frac{g^{2}}{\Omega}$
If we're adding one electron

$$
B=b+\frac{g}{\Omega} \rightarrow\left[B, B^{\dagger}\right]=\left[b, b^{\dagger}\right]=1
$$

Ground-state is: $|G S\rangle=c^{\dagger}\left|-\frac{g}{\Omega}\right\rangle \rightarrow E_{G S}=-\frac{g^{2}}{\Omega} ;\left\langle b^{\dagger} b\right\rangle=\frac{g^{2}}{\Omega^{2}}$
where $b\left|-\frac{g}{\Omega}\right\rangle=-\frac{g}{\Omega}\left|-\frac{g}{\Omega}\right\rangle \rightarrow B\left|-\frac{g}{\Omega}\right\rangle=0$
Side-note: coherent states properties in the homework
while excited states have energies $\mathrm{E}_{\mathrm{n}}=-\frac{g^{2}}{\Omega}+n \Omega$

$$
b|\alpha\rangle=\alpha|\alpha\rangle \rightarrow|\alpha\rangle=e^{-\frac{|\alpha|^{2}}{2}+\alpha b^{\dagger}}|0\rangle
$$

and eigenfunctions of the general form: $c^{\dagger} \frac{B^{\dagger n}}{\sqrt{n!}}\left|-\frac{g}{\Omega}\right\rangle$

Green's function can be calculated since eigenspectrum is known \rightarrow homework

Spin－polaron \rightarrow electron in a 1D FM lattice of spins $1 / 2$（many generalizations possible）
see references in M．Berciu and G．A．Sawatzky，PRB 79， 195116 （2009）

$$
\begin{aligned}
& \text { 个个企个人个 } \\
& H=-J \sum_{i}\left(\vec{S}_{i} \vec{S}_{i+1}-\frac{1}{4}\right)-t \sum_{i, \sigma}\left(c_{i, \sigma}^{\dagger} c_{i+1, \sigma}+\text { h.c. }\right)+J_{0} \sum_{i} \vec{s}_{i} \vec{S}_{i}
\end{aligned}
$$

If the electron is spin up \rightarrow boring（no spin flip possible，energy of electron just shifted by const） Introduce electron with spin－down \rightarrow can calculate exactly its Green＇s function：

$$
G(k, \omega)=\langle F M| c_{k \downarrow} \hat{G}(\omega) c_{k \downarrow}^{\dagger}|F M\rangle
$$

because the electron can flip at most once，creating a magnon in the process．Because the Hilbert space is still rather small，problem can be solved exactly（see references）．

Strong coupling limit: $J_{0} \gg t, J$

First, find eigenstate of largest term \rightarrow if the electron is at site i then it locks into a singlet with the spin at that site. The energy of the singlet is $-3 J_{0} / 4$.

This describes the polaron structure in this limit: 50\% chance for spin-down electron, 50\% chance of spin-up electron and flipped lattice spin (=magnon bound to the electron)

To find the dispersion, make a plane-wave of momentum k from these states:

$$
\begin{aligned}
& |P, k\rangle=\frac{1}{\sqrt{N}} \sum_{i} e^{i k R_{i}} \frac{c_{i \uparrow}^{\dagger} S_{i}^{-}-c_{i \downarrow}^{\dagger}}{\sqrt{2}}|F M\rangle \\
& E_{P}(k)=-\frac{3}{4} J_{0}+\langle P, k| \hat{T}+\hat{H}_{F M}|P, k\rangle=-\frac{3}{4} J_{0}-2 t^{*} \cos (k a)+\text { const }
\end{aligned}
$$

Polaron hopping $t^{*}=\mathrm{t} / 2 \rightarrow$ polaron is precisely twice as heavy as free particle. This is because the "cloud overlap" is exactly 50% in this limit (homework).

Such exact solutions on a lattice are very rare. In fact, as far as I know, this is the only kind of model that admits such an exact solution.

Polaron (lattice polaron) = electron + lattice distortion (phonon cloud) surrounding it
\rightarrow very old problem: Landau, 1933;
\rightarrow most studied lattice model = Holstein model (not very realistic)

3 energy scales: $\mathrm{t}, \Omega, \mathrm{g} \rightarrow 2$ dimensionless parameters $\lambda=\mathrm{g}^{2}(2 \mathrm{dt} \Omega), \Omega / \mathrm{t}$ (d is lattice dimension)
Eigenstates are linear combinations of states with the electron at different sites, surrounded by a lattice distortion (cloud of phonons). Can have any number of phonons \rightarrow problem cannot be solved exactly for arbitrary $\mathrm{t}, \mathrm{g}, \Omega$.
weak coupling $\lambda=\frac{g^{2}}{2 d t \Omega}=0 \quad(g=0)$
$G_{0}(k, \omega)=\frac{1}{\omega-\varepsilon_{k}+i \eta} ;$
$A_{0}(k, \omega)=\frac{\eta}{\pi\left[\left(\omega-\varepsilon_{k}\right)^{2}+\eta^{2}\right]} \xrightarrow{\eta \rightarrow 0} \delta\left(\omega-\varepsilon_{k}\right)$

How does the spectral weight evolve between these two very different looking limits?

$$
\begin{aligned}
H & =-t \sum_{<i, j>, \sigma}\left(c_{i \sigma}^{+} c_{j \sigma}+c_{j \sigma}^{+} c_{i \sigma}\right)+\Omega \sum_{i} b_{i}^{+} b_{i}+g \sum_{i} n_{i}\left(b_{i}^{+}+b_{i}\right) \\
& =\sum_{\vec{k}} \varepsilon_{\vec{k}} c_{\vec{k}}^{+} c_{\vec{k}}+\Omega \sum_{\vec{q}} b_{\vec{q}}^{+} b_{\vec{q}}+\frac{g}{\sqrt{N}} \sum_{\vec{k}, \vec{q}} c_{\vec{k}-\vec{q}}^{+} c_{\vec{k}}\left(b_{\vec{q}}^{+}+b_{-\vec{q}}\right)
\end{aligned}
$$

(spin is irrelevant, $\mathrm{N}=$ number of unit cells, \rightarrow infinity at the end, all k, q-sums over Brillouin zone)

Asymptotic behavior:
\rightarrow zero-coupling limit, $\mathrm{g}=0 \rightarrow$ eigenstates of given $\mathrm{k}: c_{\vec{k}}^{+}|0\rangle, c_{\vec{k}-\vec{q}}^{+} b_{\vec{q}}^{+}|0\rangle, c_{\vec{k}-\vec{q}-\vec{q}}^{+}, b_{\vec{q}}^{+} b_{\vec{q}}^{+}|0\rangle, \ldots$ with eigenenergies $\varepsilon_{\vec{k}}, \varepsilon_{\vec{k}-\vec{q}}+\Omega, \varepsilon_{\vec{k}-\vec{q}-\vec{q}^{\prime}}+2 \Omega, \ldots$. where, for example, $\varepsilon_{\vec{k}}=-2 t \sum_{i=1}^{d} \cos k_{i}$

\rightarrow weak coupling, $\mathrm{g}=$ "small" \rightarrow low-energy eigenstates of known k: $\left|\psi_{\vec{k}}\right\rangle=c_{\vec{k}}^{+}|0\rangle+\sum_{\bar{q}} \phi_{\bar{q}} c_{\vec{k}-\bar{q}}^{+} b_{\vec{q}}^{+}|0\rangle$ with eigenenergies $E_{\vec{k}}=\varepsilon_{\vec{k}}-\frac{1}{N} \sum_{\vec{q}} \frac{g^{2}}{\left(\Omega+\varepsilon_{\vec{k}-\vec{q}}\right)-\varepsilon_{\vec{k}}}+\ldots$ (for $k<\mathrm{k}_{\text {cross }}$)

In fact, a polaron state exists everywhere in the $B Z$ only in $d=1,2$. In $d=3$ and weak coupling, the polaron exists only near the center of the BZ.

$$
G(k, \omega)=\frac{1}{\omega-\varepsilon_{k}-\Sigma(k, \omega)+i \eta} \rightarrow \omega-\varepsilon_{k}=\operatorname{Re}[\Sigma(\omega)] ; \quad \operatorname{Im}[\Sigma(\omega)]=0
$$

G.L. Goodvin and M. Berciu, EuroPhys. Lett. 92, 37006 (2010)
\rightarrow very strong coupling, $\lambda \gg 1(t \rightarrow 0) \rightarrow$ small polaron energy is

$$
\begin{aligned}
& E_{k}=-\frac{g^{2}}{\Omega}+e^{-\frac{g^{2}}{\Omega^{2}}} \varepsilon_{k}+\ldots \rightarrow t_{e f f}=t e^{-\frac{g^{2}}{\Omega^{2}}} \rightarrow m_{e f f}=m e^{\frac{g^{2}}{\Omega^{2}}} \\
& \text { and wavefunction is }\left|\psi_{k}\right\rangle=\sum_{i} \frac{e^{i \vec{k} \cdot \vec{R}_{i}}}{\sqrt{N}} c_{i}^{\dagger}\left|-\frac{g}{\Omega}\right\rangle_{i}
\end{aligned}
$$

Again, must have a polaron+one-phonon continuum at $\mathrm{E}_{G S}+\Omega \rightarrow$ details too nasty

Because here polaron dispersion is so flat, there is a polaron state everywhere in the BZ.

$>$ Diagrammatic Quantum Monte Carlo (Prokof'ev, Svistunov and co-workers)

\rightarrow calculate Green's function in imaginary time

$$
\left.G(k, \tau)=\langle 0| c_{k} e^{-\tau H} c_{k}^{\dagger}|0\rangle=\sum_{\alpha} e^{-\tau E_{1, k, \alpha}}\left|\langle 1, k, \alpha| c_{k}^{\dagger}\right| 0\right\rangle\left.\right|^{2} \xrightarrow[\tau \rightarrow \infty]{ } Z_{k} e^{-\tau E_{k}}
$$

Basically, use Metropolis algorithm to sample which diagrams to sum, and keep summing numerically until convergence is reached
$>$ Quantum Monte Carlo methods (Kornilovitch in Alexandrov group, Hohenadler in Fehske group, ...) \rightarrow write partition function as path integral, use Trotter to discretize it, then evaluate. Mostly low-energy properties are calculated/shown.
$>$ Exact diagonalization $=\mathrm{ED} \rightarrow$ finite system (still need to truncate Hilbert space) \rightarrow can get whole spectrum and then build $G(k, w)$

$>$ Variational methods

$>$ Cluster perturbation theory: ED finite system, then use perturbation in hopping to "sew" finite pieces together \rightarrow infinite system.
$>+1 \mathrm{D}, \mathrm{DMRG}+\mathrm{DMFT}$
$\rightarrow \ldots$ (lots of work done in these 50 years, as you may imagine)

Analytic approaches (other than perturbation theory) \rightarrow calculate self-energy

$$
G(k, \omega)=\frac{1}{\omega-\varepsilon_{k}-\Sigma(k, \omega)+i \eta}
$$

For Holstein polaron, we need to sum to orders well above $\mathrm{g}^{2} / \Omega^{2}$ to get convergence.

n	1	2	3	4	5	6	7	8
Σ, exact	1	2	10	74	706	8162	110410	1708394
Σ, SCBA	1	1	2	5	14	42	132	429

Traditional approach: find a subclass of diagrams that can be summed, ignore the rest
\rightarrow self-consistent Born approximation (SCBA) - sums only non-crossed diagrams (much fewer)

New proposal: the MA ${ }^{(n)}$ hierarchy of approximations:

Idea: keep ALL self-energy diagrams, but approximate each such that the summation can be carried out analytically. (Alternative explanation: generate the infinite hierarchy of coupled equations of motion for the propagator, keep all of them instead of factorizing and truncating, but simplify coefficients so that an analytical solution can be found).

MA also has variational meaning:

\rightarrow only certain kinds of bosonic clouds allowed (0. S. Barišic, PRL 98, 209701 (2007))
\rightarrow what is reasonable depends on the model. In the simplest case (Holstein model):

$$
\begin{aligned}
& \mathrm{MA}^{(0)} \rightarrow c_{i}^{\dagger}\left(b_{j}^{\dagger}\right)^{n}|0\rangle, \quad(\forall) i, j, n \\
& \mathrm{MA}^{(1)} \rightarrow c_{i}^{\dagger}\left(b_{j}^{\dagger}\right)^{n} b_{l}^{\dagger}|0\rangle, \quad(\forall) i, j, l, n
\end{aligned}
$$

(needed to describe polaron + one-boson continuum)

3D Polaron dispersion

Polaron bandwidth much narrower than 12t !
L. -C. Ku, S. A. Trugman and S. Bonca, Phys. Rev. B 65, 174306 (2002).

Our answer to how spectral weight evolves as λ increases from weak to strong coupling

Away from Holstein:
Coupling to breathing-mode phonon: $g(q) \propto i \sin \frac{q}{2}$:scattering amplitude depends on

G. L. Goodvin and M. Berciu, PRB 78, 235120 (2008)

Numerics: Bayo Lau, M. Berciu and G. A. Sawatzky, Phys. Rev. B 76, 174305 (2007)

Phonons can also modulate the hopping integral!
Model 1: Edwards model (A. Alvermann, D.M. Edwards and H. Fehske, PRL 98, 056602 (2007))
Example (not 100\% accurate) consider particle moving in an AFM Ising background.

\leftarrow boson (= magnon) created at initial site

\leftarrow or boson annihilated at final site

$$
\begin{aligned}
& H=-t_{b} \sum_{i, j} c_{j}^{\dagger} c_{i}\left(b_{j}+b_{i}^{\dagger}\right)+\Omega \sum_{i} b_{i}^{\dagger} b_{i}+\lambda \sum_{i}\left(b_{i}^{\dagger}+b_{i}\right) \rightarrow \\
& H=-t_{f} \sum_{i, j} c_{j}^{\dagger} c_{i}-t_{b} \sum_{i, j} c_{j}^{\dagger} c_{i}\left(b_{j}+b_{i}^{\dagger}\right)+\Omega \sum_{i} b_{i}^{\dagger} b_{i} \quad \text { where } t_{f}=2 t_{b} \frac{\lambda}{\Omega}
\end{aligned}
$$

Note: even if $\mathrm{t}_{\mathrm{f}}=0$ can still dynamically generate a polaron mass through 3-boson, 3-site processes. The 1D version is not realistic for a spin background (cannot have hole at the same site as boson), but 2D is ok and it gives nnn hopping (Trugman loops).

Such closed loops are ignored in the usual treatment of a hole in a tJ-model \rightarrow usually SCBA = non-crossed diagrams only (bosons annihilated in inverse order to how they were created), whereas such loop processes correspond to maximally crossed diagrams (bosons annihilated in the same order they were created).

1D: good comparison with variational ED results. For $\mathrm{t}_{\mathrm{f}}=0$, indeed we see nnn hoppinglike dispersion.

M. Berciu and H. Fehske, PRB 82, 085116 (2010)

2 D : no available numerical results.

Indeed a large $2 n d n n$ hopping arises and dominates dispersion at low t_{f}

Model 2: phonon-modulated hopping like in polyacetylene (Su-Schrieffer-Heeger)

$$
t_{i, i+1} \propto e^{-\alpha\left(R_{i+1}-R_{i}\right)}=t_{0} e^{-\alpha\left(u_{i+1}-u_{i}\right)} \approx t_{0}\left[1-\alpha\left(u_{i+1}-u_{i}\right)\right]
$$

$u_{i} \propto b_{i}^{\dagger}+b_{i}$
$V_{\text {int }}=g \sum_{i}\left(c_{i+1}^{\dagger} c_{i}+c_{i}^{\dagger} c_{i+1}\right)\left[b_{i+1}^{\dagger}+b_{i+1}-b_{i}^{\dagger}-b_{i}\right]$
\rightarrow as particle hops from one site to another, it can either create or annihilate a boson at either the initial or the final site.

Circles - MA

Lines - BDMC

Also very good agreement with data from G. de Filippis, V. Cataudella and A. Mishchenko and N. Nagaosa

PRL 105, 266605 (2010)

Momentum of GS switches from 0 (weak coupling) to finite value (strong coupling)
\rightarrow True transition (not crossover) from large to small polaron
\rightarrow Such transitions impossible in models with $\mathrm{g}(\mathrm{q})$
(ii) Spectral weight sum rules (see PRB 74, 245104 (2006) for details)

$$
\begin{array}{r}
M_{n}(k)=\int_{-\infty}^{\infty} d \omega \omega^{n} A(k, \omega)=-\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\infty} d \omega \omega^{n} G(k, \omega) \leftarrow \text { can be calculated exactly } \\
M_{n}(k)=\langle 0| c_{k} H^{n} c_{k}^{+}|0\rangle
\end{array}
$$

$M A^{(0)}$ satisfies exactly the first 6 sum rules, and with good accuracy all the higher ones.
Note: it is not enough to only satisfy a few sum rules, even if exactly. ALL must be satisfied as well as possible.

Examples: 1. SCBA satisfies exactly the first 4 sum rules, but is very wrong for higher order sum rules \rightarrow fails miserably to predict strong coupling behavior (proof coming up in a minute).
2. Compare these two spectral weights:
$A_{1}(\omega)=\delta(\omega) \rightarrow M_{0}=1 ; M_{n>0}=0$

$A_{2}(\omega)=\frac{1}{2}\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right) \rightarrow M_{n}=\frac{\omega_{0}^{n}}{2}\left[1+(-1)^{n}\right]=0$, if n is odd

$$
M_{n}(k)=\int_{-\infty}^{\infty} d \omega \omega^{n} A(k, \omega)=-\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\infty} d \omega \omega^{n} G(k, \omega)
$$

Since $G(k, w)$ is a sum of diagrams, keeping the correct no. of diagrams is extremely important!

$$
\text { found correctly if } \mathrm{n}=0 \text { diagram kept correctly } \rightarrow \text { dominates if } \mathrm{t} \gg \mathrm{~g}, \lambda \rightarrow 0
$$

$$
M_{6}(\vec{k})=\varepsilon_{\vec{k}}^{6}+g^{2}\left[5 \varepsilon_{\vec{k}}^{4}+6 t^{2}\left(2 d^{2}-d\right)+4 \varepsilon_{\vec{k}}^{3} \Omega+3 \varepsilon_{\vec{k}}^{2} \Omega^{2}+6 d t^{2}\left(\varepsilon_{\vec{k}}^{2}+\varepsilon_{\vec{k}} \Omega+2 \Omega^{2}\right)\right.
$$

$$
\left.+2 \varepsilon_{\vec{k}} \Omega^{3}+\Omega^{4}\right]+g^{4}\left[18 d t^{2}+12 \varepsilon_{\vec{k}}^{2}+22 \varepsilon_{\vec{k}} \Omega+25 \Omega^{2}\right]+15 g^{6}
$$

$$
M_{6, M A}(\vec{k})=M_{6}(\vec{k})-2 d t^{2} g^{4}
$$

found correctly if we sum correct no. of diagrams \rightarrow dominates if $g \gg t, \lambda \gg 1$
$M_{6, S C B A}(\vec{k})=M_{6}(\vec{k})-g^{4}[\ldots]-.10 g^{6}$

$$
\lambda=\frac{g^{2}}{2 d t \Omega}
$$

