Electronic structure of correlated
electron systems



Band Structure approach vs atomic

Band structure

Delocalized Bloch states

Fill up states with electrons
starting from the lowest
energy

No correlation in the wave
function describing the system
of many electrons

Atomic physics is there only on
a mean field like level

Single Slater determinant
states

Atomic

Local atomic coulomb and
exchange integrals are central

Hunds rules for the Ground
state -Maximize total spin-
Maximize total angular
momentum-total angular
momentum J =L-S<1/2 filled
shell , J=L+S for >1/2 filled
shell

Mostly magnetic ground states



Taken from the lecture notes of llya
Elfimov UBC which will also be put on
a web site.



Problem at hands

Solve Schrodinger equation for any system
(atom, molecule, solid)

HY, (7 S EN) = Eyi(Z1,2s, ..., TN )
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Problem: no analytical solution for more than one
electron due to el-el inferaction



Density functional theory

Hohenberg and Kohn 1964 (proof of existence):

"the external potential Ve.:(7)is (to within a costant) a
unique functional of p(7); since, in turn Ve,:(r) fixes H
we see that the full many particle ground state is a

-\ n

unique functional of p(7)
() :\// O 5 P diy

Elp] =T[p] + Eeelp] + Eenlp]

Universally valid System dependent

P. Hohenberg and W. Kohn Phys. Rev. 136, B864 (1964)




Vet = H=2>U= p(f) <V «H <V,

1) use ¥’ as a trial wave function for H
EO<<xp'|ﬁ|\1:'>:<qﬂ|ﬁ'|m’>+<qf’|ﬁ—ﬁ'|qﬂ>

which yield

Bo < By + [ p(i)Veat — Viudld (1)
2) repeat the same steps for ¥ and H'

By < Bo— [ p()Veat = Viseld? (2)

Adding (1) and (2) gives contradiction
Eo+Ey<Eyg+Ey or 0<0

Therefore, there can not be two different Vex: that yield
the same ground state electron density.




Second HK theorem

The functional that delivers the ground state energy
of the system, delivers the lowest energy if and only
if the input density is the ground state density.

(9| A | F) = T[] + Veelp] + / 0 Ve — Ef)
E[p] 2 Eolpo] = (Vo | H | ¥o)

Problem: Hohenberg-Kohn theorems give us no clue about

neither the nature of the density functional nor how to
find it.



Kohn-Sham ansatz

The exact ground state density can be represented
by the ground state density of an auxiliary system
of non-interacting particles.

Interacting system
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Non-interacting system

W. Kohn and L.J. Sham Phys. Rev. 140, A1133 (1965)




XC functional

This functional contains everything that is unknown

Eyclpl = (Tlp| — Tslp)) + (Eeelp] — Jp])
2 \ Vi \

True Kinetic energy of None- True el-el Hartree
the interacting system inferacting inferaction term

-
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Kohn-Sham one-electron equation

2|¢l I —Ptrue(—)

(—§v2 /|, i |d’ +V$C+Vext)¢n(—*) —enfbn(—)

Vet = Hartree + exchange-correlation +
electron-nuclear

Note, this is self consistent operator i.e. the
operator depends on its own solution! Therefore, one
needs an iterative method to solve this problem.

W. Kohn and L.J. Sham Phys. Rev. 140, Al133 (1965)



Build potential:

Start density
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Local density approximation

LDA assumes that XC energy for an inhomogeneous
electron gas can be partitioned info smaller regions
that are locally homogeneous and that fotal XC
energy is just a sum of these smaller regions:

ELPA[p] = / O(F)ens (0(F))dF

R\

from inhomogeneous from homogeneous
system electron gas



Exchange correlation

energy
exc(P(F)) = €x(p(F)) + €. (p(T))
co(p(7) = > (D) 22

This is simply the
exchange energy per
electron of the
homogeneous gas

There is no such explicit
expression for the
correlation energy



Example: correlation energy of uniform electron gas

which satisfies strong and weak coupling limits

1
ecln) = —2q(1+ ayrs)In (1L + :
* ; 2B’ + Bt + BarZ + Bar2) |
where 1 o
G = Zc_nexP (_E ; (144)
B3 = 2037 . (145)

The coefficients a; = 0.21370, 33 = 1.6382, and 3y = 0.492M are found by
fitting to accurate Quantum Monte Carlo correlation energies [37] for r, =2, 5,
10y 20, 50, and 100.

7. DM, Ceperley and B.J, Alder, Phys, Rev. Lett, 45, 566 (1960),



DFT and band theory of solids

The many electron wave function is assumed to be a
single Slater determinant of one electron Bloch
states commensurate with the periodic symmetry of
the atoms in the lattice and so has no correlation in it

The single particle wave functions ¢

P — _‘ _____ ‘ contain the other quantum
PraPo P Pin numbers like atomic nlm and spin.

k represents the momentum vector
The effects of correlation are only in the effective
one particle Hamiltonian

md?’

r'+v
r—r "

Veff — Vnuclear T j



Using such a single Slater determinant means that
there is no correlation in this many electron wave
function. The effects of correlation are in H only in
the form of effective single particle potentials. In a
simple physical picture of this we imagine that each
electron repels other electrons and produces a
suppression of density around it. This is referred to
as an “ exchange correlation hole”. In this form of
DFT the effect of this is in the potential but cannot
be included in the many electron wave function



Abinito approach to DFT as applied to
band theory of solids

 We can get the “exact” ground state energy and
ground state density (crystal structure ) provided the
exchange correlation potential is known

* Recall that the ground state has few properties
I.e.energy and density, It is the excited states that
determine the response to External perturbations
such as fields

* If we had the ground state wave function on the
other hand we could at least guess at some of the

properties such as metallic or insulating, magnetic or
not etc.



DFT band theory in LDA

Remember that the one electron wavefunctions
¢ in the above have no physical meaning in
fact and neither do the one electron energies .
They are merely a tool to calculate the total
ground state energy and density.

Note also that the total many body wave
function also has no meaning physically and
actually is not an eigenfunction of the original
Hamiltonian.

Non the less in band theory these are taken to
be the “quasi” particle energies and wave
functions in comparisons with experiment.



The DFT wave function is not an eigen function of the
exact Hamiltonian

dft dft
Hdﬁ\deft _ EG\Pdft However HexactLP * EG\P

n 2
Hexact :_le -1/ 2V|2 +W(r|)+1/ sz,i;tj re_r ‘
i= i J

The single particle wave functions have k as a good quantum
number in DFT. The electron -electron term in H exact will
always have scattering matrix elements

| >@ . . -€- 2electrons k,k' scatter from below to
gak ng §0k ng above k' k’’ the Fermi Energy.
. Consider tight binding one electron O, = 1/ \/NZ ¢(r _ Ri )eik-Ri

Wave functions

2 These matrix elements will be largest if the two
e R .
< ‘_‘ > electrons are on the same atomic site in which
ri — rj case = U i.e. Hubbard.



Now look at the electron electron
scattering due to a Hubbard like U

U With k+k’ -k’-k’”” = 0 for momentum conservation
<xp ‘H- N7 — —_  Where kand k’ are occupied states and k’ and k'’
gdft int k—k' .
SR N  are unoccupied.

GOES TO ZERO FOR N INFINITE. However we have to sum over all
these scattering events and if U is comparable to the band width
W or the Fermi energy as measured from the bottom of the band
then basically all electrons are involved and in the total we have
to sum over these resulting in an effective a scattering matrix
element of one electron due to interaction with all the others

of U. This demonstrates how one can be misled by looking at a
single off diagonal matrix element and that for U comparable

to W the effective scattering is actually U. IN OTHER WORDS

L|det is far from being an eigenfunction of the exact Hamiltonian
if U is comparable to W.



For systems with R<<D

For R<<D and Large U we get a qualitatively
different ansatz wave function. Consider a half
filled s like band i.e. 1 electron per atom on
average. For a zero band width W the ground
state wave function might look more like .

Where the integers now label sites

. And the one electron wave functions
\PA o N! ‘¢1¢2¢3 Pn Are atomic orbitals center at cite i

The off diagonal matrix elements now involve W i.e. hoping
so this is better for U>>W. Note that also here we have on the
Average one electron per atom as in the DFT wave function



In the zero band width limit and again a single s like band

the electron charge density in DFT would also correspond

to exactly one electron per atom but the wave function would
be a single Slater determinant of one electron Bloch waves

and not a single Slater determinant of atomic site localized

s orbitals with one electron at each site. In the DFT case

there would be two electrons with opposite spin in each k state
while in the atomic case each atom would have one unpaired
electron and S=1/2. This would yield a paramagnetic susceptibility
i.e. 1/Temp as expected for a collection of independent atoms
with one electron per atom. In the DFT approach the material
would be expected to be metallic since the band is half full and
the band is centered at Ef . The atomic like approach would
obviously yield an insulator since to move an electron we reguire
an excitation to an doubly occupied cite resulting in an excitation
Energy of U>>W.



Including the exchange correlation
hole in DFT wave function

In our simple example of a lattice of H atoms
with one electron per atom we could
conceptually include an exchange correlation
hole in the wave function. Basically it would
correspond to every occupied by one electron
Is also forced to have an unoccupied opposite
spin orbital on that atom. This if we could
impliment it would result in qualitatively the
same properties as the atomic limit. However
we don’t really know how to impliment this.



Configuration interaction approach

The one electron wave functions in  atomic do
not possess the symmetry of the lattice which
in chemistry is called a broken symmetry
ansatz. To include intersite hoping
perturbatively we consider mixing in electron
configurations with now empty sites and
others with two electrons on a site.

tEE4dEr o A

T=nn hoping integral Energy =U

Mixing in of this excited state wave function amplitude = t/U But there are an infinite
Number of these virtual excitations in a configuration interaction approach.



Density of
States

Band theory result for a
coexistence of extreme states

R>>D band not full and not empty
Results in a narrow band at Ef

/ R<D

Energy

Ef



Huge successes of DFT

Obtain the correct ground state crystal structure and
quite accurate lattice parameters for a large diversity
of systems

Obtain the correct magnetic structure for a large
diversity of materials

First principles method to calculate electron phonon
coupling by introducing lattice distortions and
obtaining the new ground state energy

Extremely important role in also correlated electron
systems for the determination of parameters to be
used in many body Hamiltonian approaches.



What do we really mean by states
above and below Ef?

* E<Ef eigenstates of the N-1 electron system
i.e. ionization states of the N electron system
i.e. Reachable by photoemission

 E>Ef eigenstates of the N+1 electron system
l.e. electron affinity states of N particle
system i.e. reachable by inverse photo
electron spectroscopy states

* These two differ by two electrons



Experimental measurement

e States below Ef ----Photoelectron
spectroscopy PES or ARPES. Removes one
electron

e States above Ef ---Inverse photoelectron
spectroscopy IPES. Adds one electron



PES
Ioo 4(0

oy vo/ct/es

( /940/‘; e/ec/’;ol\ S}’e‘/zt_)

- Va/en ce e/ec Z-ron.s

Conssdev o /77:1‘«1 —

o |
E =tuw-£ - 4|
s Bo-6, 1 1
A
W/‘oéﬂl—.ﬂ—;
E:h'n

[Teascere= Jens;'z)« %J‘/;&/;_S

! oeea/;/'el ccr)
’\"? In Lens s

7
CI";;?CJ ([cc—/’oh‘
@s kfuhc/';'o*v 4’7[

£e

— /

SIS EF‘V‘I776~

o

Cl(eci_roh re/77ot/a[ X /7a[r/'x o envmz‘



ci‘"""“ J’E-‘) I PES / BI.S ( q;::;rfull;.h; ‘_)
£ yesra ‘,m(r.

Cnvelves CanJu_c.z}'an banwd slales

[ Teos gee v & ffi&)as @ fecncsion o 'E"Q
f-ﬁ‘l’J

cen occcepred
eck).

Inl-casiz;. - ,’-(ozrh;
t(’-u:ﬂaf ko Ffon fuv

scnciion (
of elec?vreong

8&—} elec/von Sin
(retalive Lo E;;-)

~ Fov 8BS 1;4.) = comns Z
. emeidemr Z clecl/ reonm
1 chrrﬂr s G—‘-hjf.(

S T T B

”fas“re: cﬁft) /or' a/ec.fron QJJ'/:ﬂA-[



Angular resolved photo and inverse photo
electron spectroscopy

huw g
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‘TL cryslal meis
Consider a single cryst
Eigenstates have periodicity of the crystal

Momentum (k) is a good quantum number

Photon energy is low, long wave length, zero momentum
change

Energy conservation E(K)=e(k) +e(photon), e(k) = band
dispersion

Momentum conservation K =k + G



One example of the many N-1 electron eigenstates which in this

case result in Various numbers of vibrational excitations

The electrons in H2 are “ dressed” with lattice molecular vibrations-phonons in solids

counting rate
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Electron removal spectral function for H2
molecular solid with large lattice spacing

For large lattice spacing band width is zero.

Sudden removal of an electron decreases the binding between the H
atoms in a molecule causing an increase in the equilibrium bond length for
He+ molecule.

The N-1 electron eigenstates will involve the vibrational excitations of the
H2+ molecule

Energy conservation will result in the photoelectron exhibiting peaks
including the possible vibrational excitations of H2+

The intensity of each peak will be given by the overlap integral of the
ground state H2 vibrational wave function with that of the vibrational
eigenstates of the H2+ molecule.

The lowest energy N-1 electron state will have a spectral weight of about
10% of the total which in a solid would mean a quasi particle weight of 10
reducing the band width by 10.

The electron in the solid is dressed by Phonons resulting in a polaronic like
state



Andrea Damascelli will give a lecture in

beginning of March | hope about angular
resolved photoelectron.

Mona Berciu has agreed to give a lecture
in the beginning of March as an

introduction to electron phonon coupling
in solids.



Angular resolved photoelectron spectroscopy (ARPES) of Cu metal

Thiry et al 1979

ARPES Cu
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What if we remove 2- d electrons ?
Two hole state with Auger spectroscopy

Auger electron Photoelectron

Photor:
3d

Example is for Cu with
A fully occupied 3d band

2p 932eV
E(photon)-E(photoelectr) = E(2p) , E (2-d holes)= E(2p)-E(3d)-E(Auger)

U = E( 2-d holes) -2xE(1-d hole)



Auger spectroscopy of Cu metal
Atomic multiplets

Looks like gas phase
u>w , .projcc /oJ [oca/ f z‘
Two hole bound ;\ates dhele Jcn::‘// 0/1' atles
=
5.,n.'...mt
1 ~£%
> I'\ J f"
3 4 [ JON
& ’ l'-Scl cony {:/,.,.
3 | \ f
3 ‘.) ... o/ one hole Jcnu y '/
; ' | y I(Jl_;
g | b34
L4 '
Hund’s rule - — A
Triplet F is XL e — - - . W 3D
Lowest %10 [ b azs ]

overe verer = TI2aY = &, (band)

The L3M45M45 Auger spectrum of Cu metal i.e final state has 2 -3d holes on the
Atom that started with a 2p hole. Solid line is the experiment. Dashed line is one
Electron DFT theory, vertical bars and lables are the free atom multiplets for 8- 3d
electrons on a Cu atom . Ef designates the postion of the Fermi level in the DFT .

Antonides et al 1977 Sawatzky theory 1977



We note that for Cu metal with a full 3d band in the ground state one
particle theory works well to describe the one electron removal
spectrum as in photoelectron spectroscopy this is because a single d
hole has no other d holes to correlated with. So even if the on site d-d
coulomb repulsion is very large there is no phase space for
correlation.

The strength of the d-d coulomb interaction is evident if we look at
the Auger spectrum which probes the states of the system if two
electrons are removed from the same atom

If the d band had not been full as in Ni metal we would have noticed
the effect of d-d coulomb interaction already in the photoemission
spectrum as we will see.



D shells are complicated by multiplet
structure

e Atomic physics — d orbital is 5 fold degenerate not
including the spin and neglecting the spin orbit
coupling .

 Two d electrons or holes with orbital angular
momentum =2 and spin of % can couple into total
angular momentum states L with total spin 1 or 0 as

follows ; singlet S, singlet G, singlet D and triplet P and
triplet F

* The energy separations in the Cu Auger spectrum are
from atomic coulomb integrals with triplet F as the

lowest energy state for 8 d electrons as given by
Hunds’ rule



For U>>W and in the presence of unfilled bands the
one particle removal spectrum will be very different
from that of a filled band

Compare the PES of Cu metal with a
full d band to that of Ni with on the
average 0.6 holes in the 3d band



Phtoemission from Full versus
partly full 3d bands

* |f the band is full as in Cu the removal
spectrum of one electron leaves only one hole
and one particle theory will work. This is why
DFT band theory works so well for Cu.

* In Ni metal the 3d band is partly full as seen
below. In this case things are more difficult
since the atomic 3d occupation number
fluctuates ( gquantum fluctuations) resulting
from the band structure.



Lower fig shows the Cu Density of states as
measured in angular Integrated photoemission
spectroscopy
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Contrast Cu with Ni

For Ni the 3d band crosses Ef. 3d states are in the
limit R<D i.e. correlation if bands are not full or
empty on average about 9.4 per atom.

Snapshot picture of the local atomic d occupation

d9 d10 d9 d9 d10 d10 d9 --------

Removing a d electron yields states like d8 which
involves U and d9 which does not

We can expect two energy regions for d electron
removal from Ni separated by about U in energy



Ni metal 3d density of states and phtoemission
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energy
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A Slater determinant of one electron Bloch
states involves huge polarity fluctuations

* |In band theory the probability that an atom has n d
electrons ( d states are 10 fold degenerate) is purely
statistical i.e. not taking into account the huge energy
differences with n due to the interactions.

m!

(m—n)n!

m m—-n  Where m=degeneracy, c is the
C (1_ C) Electron concentration =9.4 for Ni

P(n) =

* In real life of course fluctuations from the average cost
coulomb energy so in actual fact the d occupation will
be much more peaked about the average. This is why
we consider Ni to have either d10 or d9 and not higher
deviations from the average occupationi.e. U is large



Lang Baer and Cox JPhysF 11,
121 (1981)

* Photoemission and inverse photoemission of
all the rare earth metals

 Demonstrates the atomic multiplets of the 4f
electron removal and addition states

* Intensities given by atomic coefficients of
fractional parentage starting from the Hunds’
rule ground state
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MORE ON RARE EARTHS

 The Hubbard U; as clearly demonstrated, its
definition depends on which multiplets you
take and depends strongly on the element.
Convention is to either take the multiplet
average or the Slater FO integral.

 The multiplet splitting is very close to the
atomic value little SCREENING OF THE HUNDS
RULES INTERACTIONS I.E. SLATER F2,F4,F6
INTERACTIONS

. We will come back to this later.



Note the atomic physics heeded to
describe the rare earth 4f electron
removal and addition spectrum

For the 3d transition metal compounds
things are a lot more subtle. In some
cases we need the atomic approaches
and in others one particle theory
seems to work very well



