Model of DiffusionDiffusion Limited

 Aggregation

 Aggregation}

Phys349B
 Hamiltonian mechanics

Gretchen C. Apr/2004

1-D diffusion

-Random walk behaviour

-Diffusive equation:

$$
\frac{\partial u(x, t)}{\partial t}=\eta \nabla^{2} u(x, t)
$$

$u(x, t)$: density
η : diffusion constant
■Deterministic: given initial density $u(x, 0)$, future profile $u(x, t)$ can be predicted by solving the ODE equation.

Diffusion in a lattice

Lattice spacing=a
$\frac{\partial u}{\partial x}=\frac{u_{i+1, j, t}-u_{i, j, t}}{a}$
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{u_{i+1, j, t}-2 u_{i, j, t}+u_{i-1, j, t}}{a^{2}}$

Diffusion Limited Aggregation (DLA)

- Limited - a seed particle is placed at the center and cannot move
- Aggregation - a second particle is added randomly at a position away from the center. It sticks with the first particle or diffuses out the lattice. The process is repeated several times.
- A circle drawn to enclose the cluster -> Rmin (note, the particle is added outside Rmin)

DLA = a fractal structure

- DLA has a fractal structure and the fractal dimension can be calculated by:

$$
D=\frac{\ln N}{\ln R_{\min }}
$$

N : number of particles

- Why a fractal structure??

DLA (con't)

A primitive DLA model

Very slow~~ but I'm not intending to waste time here

DLA (con't)

- $2^{\text {nd }}$ particle sticks with the seed particle at any of the four neighbours (if it didn't leave the lattice)
- A circle drawn to enclose the two particles.
- radius $=$ Rmin $=a / 2$

DLA (con't)

- Add many many particles, and increase Rmin to enclose the whole cluster.
- Run a simple Mathematica program to see how it happened.
- We can get something quite impressive. (if you have extraordinary computer simulation programming skills that is).

DLA (con't)

Sticking Coefficient $\xi=1$.

Fractal

- a set with fractional dimension
- such as the BC coastline, which has a fractal dimension $1<\mathrm{D}<2$
- A line has $D=1$, a plane $D=2$
- Most of the well known fractal structures have self-similarity property - an enlargement of a section of the fractal resembles the original fractal structure
1.00
1.02
1.15
1.35

Fractal (con't)

+

Double the size, double the mass.
$M=K \cdot L^{1}$

Double the size, quadruple the mass.
$M=k \cdot L^{2}$

Double the size, multiply the mass by 6 .
$M=k \cdot L^{3}$

Fractal (con't)

- Amount of mass of an object inside a circle of radius r has a power law relation:

$$
M(r)=k r^{D}
$$

Where D is a fractal dimension.

Therefore...

- Denote the number of particles as $N(R)$ which is closer than some distance R away:

$$
N(R)=k R^{D}
$$

- To calculate the fractal dimension, take the logarithm both sides:

$$
D=\frac{\ln (N)}{\ln (R)}
$$

- Log-log plot of N and R gives us the slope = D, the fractal dimension

Anyway, back to my very primitive DLA

 model...- Using the equation to calculate the fractal dimension gives...

... something between 1 and 2, which is reasonable.

- Shrink spacing 'a', and using the lattice constant instead of Rmin...

FIG. 1. Random aggregate of 3600 particles on a square lattice.

- 3600 particles aggregation
- radius ~ 85 lattice constant
- D ~ $\ln (3600) / \ln (85) \sim 1.87$

Original method

- By computing density correlation function:

$$
C_{T}(r)=<\rho\left(r^{\prime}\right) \rho\left(r^{\prime}+r\right)>
$$

- density correlation function for N particle aggregation gives information about particle distribution:

$$
\begin{aligned}
& C(r)=N^{-1} \sum_{r} \rho\left(r^{\prime}\right) \rho\left(r^{\prime}+r\right) \\
& \mathrm{C}(r) \text { : average density } \\
& \text { r: distance separating the } \\
& \text { two sites }
\end{aligned}
$$

(this is an approximation to the ensemble average correlation function-> works for $r \ll R$)

Plot of $C(r)$ vs. r

- $C(r)$ averaged over directions and over six aggregates of ~3000 particles
- result:

$$
C(r) \sim r^{-0.34}
$$

Fractal dimension again...

- $C(r)$ can be considered as a measurement of the density in a shell with mass $\mathrm{dM}(r)$, radius r and thickness dr:

$$
C(r)=\frac{d M(r)}{2 \pi r d r}
$$

We know that $\quad M(r) \sim r^{D}$
Therefore,

$$
C(r) \sim \frac{r^{D-1} d r}{2 \pi r d r} \sim r^{D-2} \equiv r^{D-d}
$$

D obtained

Experimental result also gives:

$$
C(r) \sim r^{-\alpha} \equiv r^{-0.34}
$$

The fractal dimension can be calculated:

$$
D=-\alpha+d
$$

d: Euclidean dimension
D: fractal dimension
$\mathrm{D} \sim-0.34+2=1.66$
.... is the fractal dimension obtained.

Why a fractal??

- DLA is obviously a self-similar fractal structure
- the particles are more likely to stick to the tips of the branches.
- difficult for the particles to penetrate deeply into the valleys without first contacting any surface site -- the tips 'screens' the fjords
- observed with a density probability equipotential graph...

Cool pictures from Physics Today

(b) is the density
probability equipotential graph

A quick mention of sticking coefficient

- We can introduce a sticking coefficient in the computer simulation program for a DLA model
- Sticking coefficient is the probability the particle with stick to the cluster.
- With low sticking coefficient, a particle will tend to move along the occupied sites until eventually sticks
- Previous calculation was obtained with sticking coefficient set to one -the particle sticks right after it is at the neighbourhood of another particle.

DLA model with different sticking

coefficient

Sticking Coefficient $\xi=0.5$

S.C. $=0.5$

Acknowledgement

Hope I didn't miss anything....
Phew... it's finally done~
Despite the amount of brain cell-killing thinking process, this is still my favourite course of the year.
So thanks to....
Mona
Ryan M (so I actually finished it on time)
Jordan
And.. Everybody else in the class Also....

Give credits where credits are due...

The original author of the DLA model:

T.A. Witten
L.M. Sander

Well, that should be more than 20

minutes...
If not, here's a weird animation my
godbrother, Tony, made:

