
Kepler’s problem – gravitational attraction

1 Summary of formulas derived for two-body motion

Let the two masses be m1 and m2. The total mass is M = m1 + m2, the reduced mass is µ =
m1m2/(m1 + m2).

The gravitational potential is

U(r) = −Gm1m2

r
= −α

r
, where α = Gm1m2 > 0

The effective potential is then:

Ueff (r) =
l2

2µr2
+ U(r) =

l2

2µr2
− α

r

The conserved angular momentum l = µr2φ̇2 is equal to its initial value l = [~r0 × µ~v0] · ~ez, where by
definition ~r0 = ~r1(0)−~r2(0) and ~v0 = ~v1(0)−~v2(0). In general l 6= 0 . (The case l = 0 is rather trivial:

l = 0 → φ̇ = 0 i.e. φ = const, and therefore the two bodies move either towards one another, or away
from one another, along the line uniting them. This happens if ~r0 and ~v0 are parallel. I’ll probably
give this to you for homework, or we’ll discuss it in the tutorial). For what follows, I assume l 6= 0.
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Fig 1. Effective potential for l 6= 0, and turning
points for a value Erel < 0.

The effective potential reaches its minimum value at r = p given by

dUeff

dr
|r=p = 0 → p =

l2

µα
(1)

where it takes the minimum value (see Fig. 1)

−U0 = Ueff (p) → U0 =
µα2

2l2
=

α

2p
(2)

To find out the allowed range for the relative distance r, we need to find the relative energy
Erel = µ~v2

0
/2 + U(r0) from the initial conditions. We know that at any time

Erel =
µṙ2

2
+ Ueff (r) ≥ Ueff (r) (3)
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since µṙ2/2 ≥ 0. This means that motion is only possible if Erel > −U0, since that’s the minimum
value of Ueff .

It is very convenient to introduce the eccentricity e defined by

e =

√

1 +
Erel

U0

→ Erel = (e2 − 1)U0 (4)

It follows that if 0 ≤ e < 1 → −U0 ≤ Erel < 0; if e = 1 → Erel = 0; and if e > 1 → Erel > 0. We are
now ready to find the trajectory of the relative coordinate.

2 The trajectory

The equation for the trajectory (obtained from Eq. 3 + the fact that l = µr2φ̇) is

φ =
∫ ldr

r2

√

2µ(Erel − Ueff (r))

For simplicity, here I assume that the constant of integration is zero (that can always be arranged
by orienting the system of coordinates properly).

We perform the integral in the following way: we introduce the new variable

u =
p

r
→ du = −pdr

r2
→ dr

r2
= −du

p

Also, following the definitions

Erel − Ueff (r) = (e2 − 1)U0 −
l2

2µr
+

α

r

We now replace r = p/u = l2/(µαu) and U0 = µα2

2l2
, and after some struggle we find that

Erel − Ueff (r) =
µα2

2l2

[

e2 − (u − 1)2
]

We now substitute everything in the integral to find:

φ = −l
∫ du

p

1
√

2µµα2

2l2
[e2 − (u − 1)2]

= −
∫ du

√

e2 − (u − 1)2

if one uses the fact that p = l2/(µα). To do the last integral we request that (u−1)2 = e2 cos2 x, such
that the condition 0 ≤ (u − 1)2 ≤ e2 is always obeyed (this is necessary to insure that the quantity
under square root is positive). Then,

u = 1 + e cos x → du = −e sin xdx

and
√

e2 − (u − 1)2 = e sin x

In terms of x, the integral is trivial:

φ = −
∫ −e sin xdx

e sin x
= x

Since u = p/r and u = 1 + e cos x, the equation of the trajectory is:
p

r
= 1 + e cos φ (5)

Let us analyze this equation for various values of the eccentricity.
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2.1 e = 0 : the circle

If e = 0, i.e. Erel = −U0, the trajectory is r = p, i.e. a circle of radius p. This makes perfect sense if
one looks at Fig. 1, and remembers that at all times we must have Erel ≥ Ueff (r).

2.2 0 < e < 1 : the ellipse

In this case, −U0 < Erel < 0, and we expect the trajectory to be finite (see Fig. 1). Let us go back to
x = r cos φ and y = r sin φ (see Fig. 2) to understand what trajectory is described by this equation:

p = r + er cos φ = r + ex → r = p − ex → r2 = x2 + y2 = p2 − 2pex + e2x2

We group terms together to get:

y2 + (1 − e2)
(

x +
ep

1 − e2

)

2

=
p2

1 − e2

(expand the square and show that the two expressions are equivalent).
Let us define:

a =
p

1 − e2
; b =

p√
1 − e2

; x0 = ea (6)

(note: we can only do this for e2 < 1 !!) It follows that the equation of the trajectory is:

(x + x0)
2

a2
+

y2

b2
= 1

which is an ellipse of large semi-axis a, small semi-axis b, and shifted by x0 from its center (see Fig.
2). Note: if e = 0 → a = b = p, x0 = 0, i.e. the ellipse becomes a circle, as it should.
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Fig 2. Elliptic trajectory for the relative coordinate ~r.

Some interesting (and useful) relations about these quantities:

a =
p

1 − e2
= − pU0

Erel

→ Erel = − α

2a
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(I used Eq. 4 and 2). So the large semiaxis is straightforward to find from Erel. Another way to
find the large semiaxis is the following: from Fig. 2 we see that the minimum/maximum distance
between objects is

rmin = a − ae = a(1 − e), rmax = a + ae = a(1 + e) (7)

and therefore a = (rmin + rmax)/2. The values rmin and rmax are the return points, so they are given
by the solutions of the equation Erel = Ueff (r). Another way to find them is from the trajectory
equation: since −1 ≤ cosφ ≤ 1 → 1 − e ≤ p

r
≤ 1 + e → p/(1 + e) ≤ r ≤ p/(1 − e) → rmin =

p/(1 + e); rmax = p/(1 − e). These distances have special names, namely perihelion (rmin) and
ahelion (rmax).

Now it would be interesting to know what each of the two objects is actually doing, when the
relative trajectory is an ellipse. Let us assume that the CM is at rest (we can fix this by choosing

an inertial reference system in which the CM speed is zero). Remember how ~r and ~R where linked

to ~r1 and ~r2 (see Fig. 3): ~r1 = ~R + m2

M
~r, ~r2 = ~R − m1

M
~r.

If the CM is at rest, we can take ~R = 0. We know
that ~r rotates in time, describing an ellipse. So
puting the two together, the motion of the bodies
must be like in Fig. 4, with each object describing
an ellipse, proportional to m2

M
~r, respectively −m1

M
~r.

The CM is in the focus of both ellipses, and the
objects are always opposite to one another.
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Fig 3. Relation between various vectors.
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Fig 4. The motion of the two objects, when the CM (the focus of
both ellipses) is at rest. If the CM is not at rest, just imagine moving
the focus uniformly in some direction, as the masses rotate on ellipses

about it. That’s a bit too difficult for me to draw.

Finally, you can see what happens if one object is much much heavier than the other one (for
instance, we have a Sun (1) and a planet (2)). The ellipse described by the planet is given by
MS/(MS + mp)~r ≈ ~r, while the Sun describes an ellipse given by −mp/(MS + mp)~r ≈ 0. In other
words, the CM is basically in the Sun, which is so very much heavier. Therefore, the Sun stays in
the focus, and the planet orbits around it at the relative distance ~r. This is the confirmation for:
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Kepler’s 1st law: All planetary orbits are ellipses, with the Sun at the focus.
We have already confirmed:
Kepler’s 2nd law: The area swept per unit time by the line joining the planet to its sun, is

constant.
This is just equivalent with the conservation of the angular momentum, as discussed for general

motion in a central field, where we showed that

dA
dt

=
r2φ̇

2
=

l

2µ
= const.

This allows us to find the period of the orbital motion right away, since this constant must be the
total area of the ellipse πab divided by the total period T . Therefore:

πab

T
=

l

2µ
=

√
pµα

2µ
→ T = 2π

ab
√

µ
√

pα
(8)

(see Eq. 1). Now let’s put all lengths in terms of a. We have (Eq. 6)

b = a
√

1 − e2; p = a(1 − e2) → ab√
p

= a
3

2

So we get the beautiful formula

T = 2π

√

µa3

α
= 2π

√

a3

GM

In other words,
Kepler’s 3rd law: The square of the period is proportional to the cube of the large semiaxis.
If you remember, we showed that this must be the right relationship using scaling laws (mechanical

similarity). This should convince you that those scaling laws are very useful (although they don’t
tell us what the proportionality constant is!)

Let’s now look at the other possible eccentricities:

2.3 e = 1, e > 1: the parabola and the hyperbola

We proceed in the same way as for the ellipse, and find that for e = 1 we have

p = r + x → r2 = (p − x)2 → y2 = p2 − 2px → x =
1

2p
(p2 − y2)

As you know, this is the equation of a rotated parabola (see Fig. 5). The minimum distance is
p/2 (when y = 0). Indeed, looking at Fig. 1 we see that this is the turning point when Erel = 0.
Finally, the case e > 1 is treated similarly, and the resulting curve is called a hyperbola. The shortest
distance there (the turning point) is rmin = p/(1 + e), since cos φ ≤ 1. The shape is somewhat like
a distorted parabola, so I won’t draw another figure. Again, if you want to think about the motion
of the two objects, just put the CM in the focus (origin), draw two trajectories scaled in rations of
m2/M and −m1/M etc. The right-side picture in Fig. 5 should help visualize this when m1 ≈ m2.

I will post on the website a link to a PhET simulation that will allow you to look at the trajectories
of both objects, to better visualize how this really works.
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Fig 5. The parabola for e = 1. The hyperbola for e > 1 looks somewhat similar, except
that the shortest distance is not p/2, but p/(1 + e).

3 Time dependence of the motion on the ellipse

To find r(t), we need to integrate the equation:

t =
∫ dr

√

2

µ
[Erel − Ueff (r)]

Here it is convenient to express everything in terms of a; remember that Erel = −α/2a. The term
proportional to l2/µ in the effective potential can be written in terms of p and therefore in terms of
a = p/(1 − e2). After some struggle, the expression becomes:

t =

√

µa

α

∫ rdr
√

e2a2 − (r − a)2

Surprise surprise ... we will ask that

(r − a)2 = e2a2 cos2 ξ → r − a = −ea cos ξ → r = a(1 − e cos ξ)

(the minus sign and the ξ notation are just conventions for this particular problem). Then

dr = ae sin ξdξ,
√

e2a2 − (r − a)2 = ea sin ξ

and the integral becomes quite trivial:

t =

√

µa

α

∫

a(1 − e cos ξ)dξ → t =

√

µa3

α
(ξ − e sin ξ)

This is the parametric version: for any time t we can find the corresponding ξ and from that find the
value of r = a(1 − e cos ξ), so we have r(t). The period can be easily found now: a full revolution is
described by ξ = 0 → 2π, since in this case r = rmin → rmax → rmin. But if ξ varies by 2π, you can
see that this corresponds to an increase in time:

T = 2π

√

µa3

α

The problem can be solved similarly for the parabola and hyperbola -type of trajectories. The
textbook gives you thefinal results. You should try deriving them, it’s good math practice.
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