The effects of the Coriolis force on projectile trajectories

For an object in motion with respect to the Earth, the largest non-inertial force is the Coriolis
force 2mu x €2, where 2 is the angular velocity of the Earth around its North Pole - South Pole axis
(of magnitude 27 /24h). If we neglect the other 3 smaller, non-inertial forces, the equation of motion
of a projectile with respect to a non-inertial frame tied to the Earth, is:

i=g+20x0

since the gravitational force is mg. Let’s pick this NIRS as shown in the Figure below, with z-axis
pointing towards South, z-axis point radially outward from the center of the Earth, and therefore
y-axis is pointing towards East. In this frame § = —geé.,.

We use the following strategy (= perturbation theory) to solve the equation of motion:

(1) find “zero”-order solution, i.e. the solution if = 0. Let’s call this solution 7 (¢) and ,(¢),
which describes the motion of the projectile only under the influence of gravity. This is simple to
solve, since in this case:
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where 75 and v describe the initial position and velocity of the projectile. In particular, if we launch
the projectile from the point where we centered the NIRS, we have 7y = 0. The projectile will then
hit the ground again at the time 7" = 2v, . /¢g when its heigth is again z,(7") = 0.

(2) find the “first-order” corrections (i.e., terms proportional to §2) to this solution. Let’s call these
corrections 7.(t) and U.(t), since they are due to the Coriolis force. Both these quantities should be
proportional to Q (if Q = 0, there is no correction; on the other hand, we will ignore terms of order
02 or higher powers, which are much smaller since  is so small. Moreover, we know we’ve already
neglected the centrifugal force, which is of order 22, so it would be wrong to keep other such terms).

The total solution in this approximation will be 7(t) = 7,(t) + 7.(t), 0(t) = U,(t) + v.(t). If we
substitute this into the equation of motion, we find that
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We already know that djgg = ¢, because that’s how we constructed that solution. So this means that

we must have:
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The reason we neglected the term v.(t) x €2 is because we know that v, is proportional to €2, so this
product would be proportional to Q2 (too small). But (see Figure):
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We can now directly integrate these equations, since we know that 7.(0) = ¢.(0) = 0:
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So a knowledge of the initial speed, as well as the time of flight 7', allows us to find the deflections
z(T) and y.(T) of the projectile from where it would have hit the ground, if 2 = 0. You might think
that because z.(7T') is generally not zero, one would also have to correct the time of flight by some
quantity that would be proportional to €2. However, such corrections to 7" add only higher order

powers of €2 to x. and y., so they can be ignored.




