
The effects of the Coriolis force on projectile trajectories

For an object in motion with respect to the Earth, the largest non-inertial force is the Coriolis
force 2m~v× ~Ω, where Ω is the angular velocity of the Earth around its North Pole - South Pole axis
(of magnitude 2π/24h). If we neglect the other 3 smaller, non-inertial forces, the equation of motion
of a projectile with respect to a non-inertial frame tied to the Earth, is:

~a = ~g + 2~v × ~Ω

since the gravitational force is m~g. Let’s pick this NIRS as shown in the Figure below, with x-axis
pointing towards South, z-axis point radially outward from the center of the Earth, and therefore
y-axis is pointing towards East. In this frame ~g = −g~ez.

We use the following strategy (= perturbation theory) to solve the equation of motion:
(1) find “zero”-order solution, i.e. the solution if Ω = 0. Let’s call this solution ~rg(t) and ~vg(t),

which describes the motion of the projectile only under the influence of gravity. This is simple to
solve, since in this case:

d2xg
dt2

= 0;
d2yg
dt2

= 0;
d2zg
dt2

= −g →

xg(t) = x(0) + v0,xt; yg(t) = y(0) + v0,yt; zg(t) = z(0) + v0,zt− g
t2

2
→

~rg(t) = ~r0 + ~v0t−
gt2

2
~ez; ~vg(t) = ~v0 − gt~ez

where ~r0 and ~v0 describe the initial position and velocity of the projectile. In particular, if we launch
the projectile from the point where we centered the NIRS, we have ~r0 = 0. The projectile will then
hit the ground again at the time T = 2v0,z/g when its heigth is again zg(T ) = 0.

(2) find the “first-order” corrections (i.e., terms proportional to Ω) to this solution. Let’s call these
corrections ~rc(t) and ~vc(t), since they are due to the Coriolis force. Both these quantities should be
proportional to Ω (if Ω = 0, there is no correction; on the other hand, we will ignore terms of order
Ω2 or higher powers, which are much smaller since Ω is so small. Moreover, we know we’ve already
neglected the centrifugal force, which is of order Ω2, so it would be wrong to keep other such terms).

The total solution in this approximation will be ~r(t) = ~rg(t) + ~rc(t), ~v(t) = ~vg(t) + ~vc(t). If we
substitute this into the equation of motion, we find that

d2~rg
dt2

+
d2~rc
dt2

= ~g + 2 [~vg(t) + ~vc(t)]× ~Ω

We already know that d2~rg
dt2

= ~g, because that’s how we constructed that solution. So this means that
we must have:

d2~rc
dt2

= 2~vg(t)× ~Ω

The reason we neglected the term ~vc(t)×Ω is because we know that ~vc is proportional to Ω, so this
product would be proportional to Ω2 (too small). But (see Figure):

~vg(t)×~Ω =

∣∣∣∣∣∣∣

~ex ~ey ~ez
v0,x v0,y v0,z − gt

−Ω cosλ 0 Ω sinλ

∣∣∣∣∣∣∣
= ~exv0,yΩ sinλ−~ey [v0,xΩ sinλ+ (v0,z − gt)Ω cosλ]+~ezv0,yΩ cosλ

1



We can now directly integrate these equations, since we know that ~rc(o) = ~vc(0) = 0:

d2xc
dt2

= 2v0,yΩ sinλ→ xc(t) = v0,yΩ sinλt2

d2yc
dt2

= −2 [v0,xΩ sinλ+ (v0,z − gt)Ω cosλ]→ yc(t) = − [v0,xΩ sinλ+ v0,zΩ cosλ] t2 + gΩ cosλ
t3

3

d2zc
dt2

= 2v0,yΩ cosλ→ zc(t) = v0,yΩ cosλt2

So a knowledge of the initial speed, as well as the time of flight T , allows us to find the deflections
xc(T ) and yc(T ) of the projectile from where it would have hit the ground, if Ω = 0. You might think
that because zc(T ) is generally not zero, one would also have to correct the time of flight by some
quantity that would be proportional to Ω. However, such corrections to T add only higher order
powers of Ω to xc and yc, so they can be ignored.
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