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Perturbational study of the lifetime of a Holstein polaron in the presence of weak disorder
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Using the momentum average (MA) approximation, we find an analytical expression for the disorder-averaged
Green’s function of a Holstein polaron in a three-dimensional simple cubic lattice with random on-site energies.
The on-site disorder is assumed to be weak compared to the kinetic energy of the polaron, and is treated
perturbationally. Within this scheme, the states at the bottom of the polaron band are found to have an infinite
lifetime, signaling a failure of perturbation theory at these energies. The higher-energy polaron states have a finite
lifetime. We study this lifetime and the disorder-induced energy shift of these eigenstates for various strengths
of disorder and electron-phonon coupling. We compare our findings to the predictions of Fermi’s golden rule
and the average T -matrix method, and find a significant quantitative discrepancy at strong electron-phonon
coupling, where the polaron lifetime is much shorter than Fermi’s golden rule prediction. We attribute this to the
renormalization of the on-site potential by the electron-phonon coupling.
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I. INTRODUCTION

Studying the behavior of solid state systems under the
simultaneous action of disorder and interactions is a significant
challenge in condensed matter physics. Strong correlations
in interacting systems often give rise to sharp quasiparticles.
Scattering of such quasiparticles from weak disorder should
just limit their lifetime. For strong disorder and no interactions,
it is well understood1 that constructive interference of the
backscattered waves can localize single particles such that
they lose their itinerancy. If interactions are turned on, there is
no consensus about the effect of disorder on the quasiparticles
of interacting systems.

For example, consider polarons, which are the focus of
this work, and which are quasiparticles comprising a charge
carrier plus a cloud of phonons describing the lattice distortions
in the vicinity of the charge. If one views the polaron as a
particle with a renormalized mass, large disorder should result
in Anderson localization. However, phonon-assisted hopping
of carriers between localized states is well established as a
conduction process in lightly doped semiconductors.2 This
suggests that, for suitable electron-phonon couplings, polarons
may still be itinerant in a disorder potential that would localize
particles with the same effective mass. A possible explanation
for this was offered recently in Refs. 3 and 4, where the
momentum average (MA) approximation was used to show
that the electron-phonon coupling renormalizes the disorder
potential in a strongly energy-dependent manner, so that the
effective disorder seen by polarons can be drastically different
from the bare disorder.

References 3 and 4 focused on the effect of a single
impurity potential on the polaron, although, as explained there,
MA generalizes straightforwardly to other types of on-site
potentials, including disordered ones. As such, it could be
used to study numerically the effect of disorder, by generating
results for various disorder realizations and analyzing their
statistics. Such results have already been obtained for the
Holstein5 polaron using the statistical dynamic mean-field
theory (sDMFT).6,7 Given the quite different underlying

approximations, it might be useful to check whether MA leads
to similar results.

A different approach, valid for weak disorder, is to
use perturbation theory and perform the disorder average
analytically, similarly to the Born approximation widely
employed for charge carriers in the absence of electron-phonon
coupling.8 Because localization cannot be described within
a perturbational calculation, the polaron eigenstates remain
extended and self-averaging over all disorder realizations is
appropriate.

Here we follow the latter approach and calculate, using MA
and for weak disorder, the disorder-averaged Green’s function
of the Holstein polaron and the resulting polaron lifetime and
energy shift. MA is an accurate analytical method originally
developed for calculating the Green’s function of Holstein
polaron in clean systems,9 and later extended to other types of
coupling.10,11 MA is nonperturbative in the electron-phonon
coupling as it sums all diagrams in the self-energy expansion,
up to exponentially small terms that are neglected. It also has a
variational interpretation, in terms of the allowed structure
of the polaron cloud.12,13 MA can also be systematically
improved by increasing this variational space,13 giving rise
to the MA(0), MA(1), etc., flavors which become more accurate
but at an increased computational cost. Because here we focus
only on the lowest-energy polaron states, which are already
accurately described at the MA(0) level, in the following we
restrict ourselves to this flavor and call it MA for simplicity.

The paper is organized as follows. In Sec. II, we present
the generalization of MA to include disorder perturbation-
ally. Section III contains the results and their analysis, and
Sec. IV has our conclusions. Various computational details are
organized and presented in several Appendices.

II. THE MODEL AND ITS SOLUTION

The Hamiltonian for a single Holstein polaron in a lattice
with random on-site energies is

H = Hd + V̂el-ph = H0 + V̂d + V̂el-ph, (1)
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where the noninteracting part of the Hamiltonian, Hd, is
divided into V̂d = ∑

i εic
†
i ci , describing the on-site disorder

potential experienced by the charge carrier, and

H0 = −t
∑
〈i,j〉

(c†i cj + H.c.) + �
∑

i

b
†
i bi, (2)

describing the kinetic energy of charge carrier plus the (optical)
phonon energies (h̄ = 1). The interaction part

V̂el-ph = g
∑

i

c
†
i ci(b

†
i + bi) (3)

describes the Holstein coupling between the charge carrier
and phonons. As usual, ci and bi are annihilation operators for
carrier and phonon, respectively, on the simple cubic lattice
of lattice constant a, whose sites are indexed by i. The spin
of the carrier is a trivial degree of freedom in this model, and
we ignore it. Throughout this work we limit ourselves to the
single-polaron limit, i.e. there is a single charge carrier in the
system.

The on-site energies, {εi}, are taken from an uncorrelated
symmetric random distribution

P({εi}) = �iP(εi). (4)

For Anderson-type disorder P(εi) has the customary form

P(εi) =
{

1/(2�) if −� � εi � �,

0 otherwise,
(5)

while P(εi) = xδ(εi − εA) + (1 − x)δ(εi − εB) for a binary
alloy, with x being the concentration of A-type atoms and
energies shifted so that xεA + (1 − x)εB = 0.

Our aim is to calculate the Green’s function of this
Holstein polaron and average it analytically over all disorder
configurations given by Eq. (4). From now on, we use an
overbar to denote disorder-averaged quantities. The strength
of disorder, σ ≡ √

ε̄2
i , is taken to be weak compared to polaron

bandwidth in the clean system, so that it can be treated
perturbationally. As a result, the polaronic picture remains
valid but its lifetime is expected to become finite due to
scattering from the disorder potential V̂d. It is precisely this
disorder-induced lifetime that interests us.

Since V̂d is weak compared to other terms in the Hamilto-
nian, we treat it as a perturbation. Dividing the Hamiltonian as
H = HH + V̂d, where HH is the Hamiltonian of the Holstein
polaron in the clean lattice, we use Dyson’s identity, Ĝ(ω) =
ĜH(ω) + Ĝ(ω)V̂dĜH(ω), to relate the resolvent Ĝ(ω) of the
system with disorder, to ĜH(ω) of the clean system. To the
second order in V̂d, we find

Ĝ(ω) ≈ ĜH(ω) + ĜH(ω)V̂dĜH(ω)

+ ĜH(ω)V̂dĜH(ω)V̂dĜH(ω).

Because disorder breaks translational invariance, the eigen-
states for any individual disorder realization are not labeled
by the momentum k. However, averaging over all disorder
configurations restores the translational invariance and makes
momentum a good quantum number again. As a result,

〈0|ckĜ(ω)c†k′ |0〉 = δk,k′Ḡ(k,ω) and we only need to calculate

the diagonal matrix element:

Ḡ(k,ω) = GH(k,ω) +
∑

i

ε̄i〈0|ckĜH(ω)c†i ciĜH(ω)c†k|0〉

+
∑
i,j

εiεj 〈0|ckĜH(ω)c†i ciĜH(ω)c†j cj ĜH(ω)c†k|0〉.

Here, GH(k,ω) = 〈0|ckĜ(ω)c†k|0〉 is the polaron Green’s func-
tion in the clean system. For completeness, its MA solution is
briefly reviewed in Appendix A.

Since ε̄i = 0 for symmetric disorder, the first-order con-
tribution vanishes (a finite average can be removed trivially
by an overall shift of the energy). Because of uncorrelated
disorder, εiεj = ε̄2

i δi,j ≡ σ 2δi,j , and the disorder-averaged
Green’s function becomes

Ḡ(k,ω) = GH(k,ω) + σ 2
∑

i

〈0|ckĜH(ω)c†i ciĜH(ω)c†i ci

× ĜH(ω)c†k|0〉.
The challenge is to use MA to calculate the matrix elements

appearing in the second term to the same level of accuracy as
GH(k,ω).13

These matrix elements can be broken into products of
generalized Green’s functions by inserting identity operators,
I, between the creation and annihilation operators. Since the
MA flavor we use here is equivalent with assuming that the
phonon cloud only extends over one site,13 at this level of
accuracy it suffices to truncate I ≈ ∑

l,n(1/n!)b†nl |0〉〈0|bn
l ,

i.e., to ignore states with phonons at two or more sites (such
states can be added systematically in higher flavors of MA).
This leads to

Ḡ(k,ω) = GH(k,ω) + σ 2
∑

i,l,s,n,m

〈0|ckĜH(ω)c†i b
†n
l |0〉〈0|bn

l ci

× ĜH(ω)c†i b
†m
s |0〉〈0|bm

s ciĜH(ω)c†k|0〉/(n!m!).

This expression involves two sets of generalized propagators,
namely 〈0|ckĜH(ω)c†i b

†n
l |0〉 and 〈0|bn

l ciĜH(ω)c†i b
†m
s |0〉. We

now evaluate them.
First, as detailed in Appendix B, to the level of accuracy

of MA, for n � 1 the first propagator vanishes unless i = l.
Therefore, we have to evaluate F

(n)
ki (ω) ≡ 〈0|ckĜH(ω)c†i b

†n
i |0〉

for n � 1. Note that F
(0)
ki (ω) is already known: F

(0)
ki (ω) =

〈0|ckĜH(ω)c†i |0〉 = GH(k,ω) exp(−ik · Ri)/
√

N , since mom-
entum is a good quantum number in the clean system. Here,
N → ∞ is the number of sites in the system. The details of
the calculation for n � 1, which is related to that of GH(k,ω),
are presented in Appendix B. The final result is

F
(n)
ki (ω) = 	n(ω)F (0)

ki (ω), (6)

where 	n(ω) are easy to calculate products of continued
fractions, see Eq. (B1).

Next, we calculate Wnm(ω) = 〈0|bn
i ciĜH(ω)c†i b

†m
i |0〉 to the

same level of accuracy. Note that because of the invariance to
translations in the clean system, this quantity is independent
of i. The detailed derivation of these functions is presented in
Appendix C.
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With these expressions in hand, the disorder-averaged
Green’s function is, to second order in σ ,

Ḡ(k,ω) ≈ GH(k,ω) + σ 2 [GH(k,ω)]2

×
∞∑

n,m=0

	n(ω)Wn,m(ω)	m(ω)

n!m!
. (7)

To the same order, this identifies the sum in the previous
equation as the disorder self-energy,


dis(ω) = σ 2
∞∑

n,m=0

	n(ω)Wn,m(ω)	m(ω)

n!m!
. (8)

This is our main result. From a computational point of view,
because the factorials in the denominator grow rapidly with
increasing index, the infinite sums can be safely truncated at
finite values for n and m. Cutoffs of 20 proved sufficient for
all cases we examined.

Using GH(k,ω) = 1/[ω − εk − 
MA(ω) + iη], see
Appendix A, we can finally write

Ḡ(k,ω) = 1

ω − εk − 
tot(ω) + iη
, (9)

where the total self-energy is 
tot(ω) = 
MA(ω) + 
dis(ω).
This implicit summation gives a more accurate expression
for the disorder-averaged Green’s function than Eq. (7), with
which it agrees to O(σ 4).

III. RESULTS

We are now prepared to study the effect of weak disorder
on the polaron lifetime and energy shift. At this level of
perturbation theory, disorder only enters through its standard
deviation σ . In the following, we assume Anderson disorder
of width 2�, for which σ = �/

√
3. We will use either � or σ

to characterize the disorder, as convenient, but we emphasize
that any other type of disorder that has the same σ would lead
to the same answer within this perturbational approximation.
To characterize the electron-phonon coupling strength, it is
convenient to use the effective coupling λ = g2/(6t�).

Once the Green’s function is known, the energy broadening
of a polaron state of momentum k, which is inversely
proportional to its lifetime, is the width of the low-energy
peak in the spectral function, A(k,ω) = − 1

π
ImḠ(k,ω). This

broadening measures the rate at which the polaron leaves
that momentum state due to scattering from the impurity
potential V̂d. In a clean system, the polaron states are infinitely
long lived, therefore the low-energy spectral weight is a
Dirac delta function (in fact, a Lorentzian of width η → 0).
Mathematically, this is a consequence of the fact that (in the
absence of disorder) the polaron self-energy 
MA(ω) has a
vanishing imaginary part for all energies inside the polaron
band.

Disorder-induced finite lifetime broadens the delta func-
tions into Lorentzians. As a reference, we review first the case
without electron-phonon coupling, λ = 0. The only nonzero
term in Eq. (8) corresponds to m = n = 0, therefore


dis(ω) = σ 2W 0,0(ω) = σ 2g0(ω), (10)

where

g0(ω) = 1

N

∑
k

1

ω − εk + iη
(11)

is the momentum-averaged free propagator.
The resulting spectral weight has a peak of width τ−1

k
centred at energy Ek, found from the pole condition,

ω − εk − 
dis(ω) + iη = 0, (12)

where ω = Ek − iτ−1
k and η → 0+.

Because τ−1
k ∼ σ 2 is small for weak disorder, we approxi-

mate 
dis(ω) ≈ 
dis(Ek) + O(σ 4). Using this in Eq. (12) gives
Ek and τ−1

k as follows:14

Ek = εk + Re
dis(Ek)
(13)

τ−1
k = −Im
dis(Ek).

The first expression determines the energy shift compared to
the electron energy in the clean system, εk. Since Reg0(ω)
is negative for ω < 0 and positive for ω > 0, this implies a
widening of the energy band in the presence of disorder.

Using Eq. (10), the inverse lifetime becomes τ−1
k =

−σ 2Img0(Ek). However, Img0(Ek) is proportional to the total
density of states (DOS) for the clean system,

Img0(Ek) = − π

N

∑
k′

δ(Ek − εk′) = −πρ0(Ek),

so that

τ−1
k = πσ 2ρ0(Ek) = πσ 2ρ0(εk) + O(σ 4). (14)

The last equality is simply Fermi’s golden rule. Since the
density of states vanishes outside the bandwidth of the clean
system, this result predicts infinite lifetime for all states with
|Ek| � 6t , and finite lifetime for all states in between. We will
return to this point below.

When the electron-phonon coupling is turned on the
analysis is performed similarly, but now using the appropriate
total self-energy. The results are discussed next.

We first consider weak electron-phonon coupling, λ = 0.5.
In Fig. 1(a) we plot the polaron inverse lifetime for states in the
polaron band, for two different values of the disorder strength,
� = 0.2t and 0.4t (squares and circles, respectively). These
values are extracted from Lorentzian fits of the lowest peak
in A(k,ω), using Eqs. (13). The broadening η was decreased
until Ek and τk converged to values independent of it.

For this small λ, the MA ground-state energy of the polaron
in the clean system is EP,GS = −6.534t . The weak disorder
does not shift the eigenstates significantly. In fact, as shown
in Fig. 1(b), the average density of states in the disordered
system ρ(ω) = − 1

π
Im

∑
k Ḡ(k,ω) is nearly identical to that of

the clean system, although the band becomes slightly broader
with increasing �. The inverse lifetime vanishes below the
clean system band edge, EP,GS , and above it increases like√

Ek − EP,GS , which is the expected clean system DOS at
the bottom of the band. This is very similar to the λ = 0
results, except for the renormalization of the DOS by the
electron-phonon interactions. Indeed, if we think of the polaron
as a simple quasiparticle whose density of states is ρ(ω)
[renormalized from ρ0(ω) for a free electron], the inverse
lifetimes we find at the bottom of the polaron band are in
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-6.5 -6.0 -5.5
Ek/t

0.000

0.002

0.004

0.006

1/tτk FGR, Δ=0.2t
FGR, Δ=0.4t
ATA, Δ=0.2t
ATA, Δ=0.4t
MA, Δ=0.2t
MA, Δ=0.4t

-6.5 -6.0 -5.5
ω/t

0.00

0.01

0.02

0.03

0.04

ρ(ω)

Δ = 0
Δ = 0.2t
Δ = 0.4t

(a) (b)

FIG. 1. (Color online) (a) Inverse polaron lifetime 1/τk vs its
peak energy Ek, and (b) average DOS ρ(ω) vs ω, for a weak electron-
phonon coupling and two values of the disorder �. The solid and
dashed lines are the corresponding Fermi golden rule (FGR) and ATA
results, respectively (see text for more details). Other parameters are
� = t , η/t = 10−2 in (a) and η/t = 5 × 10−3 in (b).

good agreement with those predicted by Fermi’s golden rule
(FGR), i.e., with πσ 2ρ(Ek) (see full lines).

While the agreement between the two is good near the
bottom of the band, it becomes systematically worse at
higher energies. To verify that this amount of disorder is
still sufficiently small so that the disagreement is not due
to using perturbational results outside their validity range,
we also show average T -matrix (ATA) results (dashed lines).
ATA is a simple way to treat disorder beyond the lowest order
in perturbation theory, for a system with λ = 0. We briefly
discuss it in Appendix D, as well as how we extended it to
finite λ. ATA converges to πσ 2ρ(ω) in the limit of small σ ,
therefore the agreement between FGR and ATA confirms that
the contribution of higher order terms in σ is indeed negligible.
The disagreement with MA at higher energies is, therefore, not
an artifact of using perturbation theory.

The meaning of this disagreement at higher energies
should, however, be treated with some caution. It is well
known12 that this flavor of MA fails to reproduce the correct
polaron + one-phonon continuum, which should start at
EP,GS + � (this problem is fixed by MA(1) and higher flavors).
One consequence is that MA overestimates the bandwidth of
the polaron at weak couplings. Indeed, in Fig. 1(a) we see that
the polaron band extends well past EP,GS + �. In other words,
we know that at these higher energies MA is not accurate
enough, so the results shown in Fig. 1 should only be trusted
close to the bottom of the band, where the agreement is good.

The monotonic decrease of the polaron’s inverse lifetime
with increasing disorder strength is shown in Fig. 2, for a
polaron with momentum k = (π/8,0,0) and λ = 0.5 (full
squares). For comparison, also shown is the corresponding
lifetime of a bare electron (λ = 0, triangles) with the same
momentum. Both curves show the expected ∝σ 2 increase
predicted by Fermi’s golden rule, but the polaron lifetime
is somewhat shorter. The most likely reason for this is
the renormalization of the polaron mass by interactions.
Indeed, if instead we plot 1/(t∗τk) vs �/t∗ for the polaron

0 0.1 0.2 0.3 0.4 0.5
Δ/t

0.000

0.001

0.002

1/tτk
polaron,  λ =0.5
free electron, λ =0
polaron, λ=0.5, axes rescaled by t/t*

FIG. 2. (Color online) Inverse lifetime of the polaron of momen-
tum k = (π/8,0,0) and λ = 0.5 vs the strength of disorder, �/t

(full squares). The inverse lifetime for a free electron with the same
momentum is shown by triangles. Empty squares show 1/(t∗τk) vs
�/t∗ for the polaron (for this λ, t∗ = 0.881t). Other parameters are
� = t , η/t = 10−2.

(empty squares), the results are much closer to those of the
free electron, especially for small values of the disorder.

The conclusion, thus far, is that Fermi’s golden rule agrees
well with our results at energies where this flavor of MA can
be trusted. In other words, at weak electron-phonon coupling,
the effect of disorder can be quantitatively understood if we
think of the polaron as a simple particle with a renormalized
mass (or DOS), and use Fermi’s golden rule.

We now check whether this also holds true at strong
electron-phonon coupling, for λ = 1.2, where a robust small
polaron appears in the clean system. The top panels in Fig. 3
show the polaron inverse lifetime vs its energy for three levels

-7.75 -7.70
Ek/t

0

1×10-4

2×10-4

3×10-4

4×10-4
1/tτk

-7.75 -7.70
Ek/t

-7.75 -7.70
Ek/t

-7.75 -7.70
ω/t

0.10

0.05

0.00

ρ(ω)
-7.75 -7.70

ω/t
-7.75 -7.70

ω/t

Δ = 0.05t Δ = 0.10t Δ =  0.15t

FIG. 3. (Color online) Top panels: 1/(tτk) vs Ek/t for three levels
of disorder: �/t = 0.05, 0.1, and 0.15. The symbols shows the MA
result for a strong coupling λ = 1.2, while the full and dashed lines
show Fermi’s golden rule and the ATA predictions, respectively.
Bottom panels: The average DOS ρ(ω) for that � (full line) and
the DOS in the clean system, ρ(ω) (dashed line) vs ω. Parameters are
� = t , η = 10−3t .
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-7.75 -7.7 -7.65
ω/t

0.00

0.04

0.08

0.12

ρ(ω)
Δ = 0
Δ = 0.05t
Δ = 0.10t
Δ = 0.15t

FIG. 4. (Color online) The same average DOS vs ω displayed in
the lower panels of Fig. 3, but now shown for the entire polaron band.

of disorder (symbols), as well as the Fermi golden rule (full
lines) and the ATA (dashed lines) predictions. The latter two
are indistinguishable, confirming that these levels of disorder
are indeed perturbationally small. The bottom panels show
the average density of states in the corresponding disordered
systems, ρ(ω) (full lines). For comparison, the polaron DOS
in the absence of disorder, ρ(ω), is also shown (dashed line).

Let us consider the DOS, first. As in the other cases, we
see that with increasing disorder, the band edge shifts down
to lower energies. However, the effect is quantitatively much
more significant here than at weaker couplings because the
polaron band is much narrower. This is seen in Fig. 4, where
we show the same densities of states but over the full polaron
band. One surprise is that the entire polaron band moves to
lower energies with increasing disorder. This is different from
what happens for a simple particle, where the band broadens
symmetrically on both sides. The different behavior at the
upper edge is likely due to the difference in their spectra.
While for a simple particle its band is the only feature in its
spectrum, the spectrum of the polaron is quite complicated,
with many other features, such as a band associated with the
second bound state, the polaron + one-phonon continuum,
etc., lying above the polaron band.13 With increasing disorder
all these features should move toward lower energies. Level
repulsion from higher-energy states would explain why the
upper edge of the polaron band moves to lower energies.

For the inverse lifetime we see that, as in the other cases,
it vanishes for states with energy below the band edge of
the clean system, Ek < EP,GS ≈ −7.73t . Because the shift
of the disorder-averaged DOS is now significant, this means
that, for a quite large energy range at the bottom of the band,
the polaron has an infinite lifetime despite the presence of
disorder. We emphasize that this is qualitatively similar to the
result for a simple particle at the bottom of its band; the effect is
simply quantitatively more pronounced here. The meaning of
this (unphysical) infinite lifetime for these low-energy states is
discussed in the conclusions; briefly, we believe that it signals
a failure of the perturbation theory at these energies. These
low-energy states are most susceptible to localization, so the
perturbational calculation and its predictions are suspect here.

For higher-energy polaron states with Ek > EP,GS , the
lifetime in the presence of disorder becomes finite, as expected.
However, here the MA results disagrees quantitatively with
the FGR and ATA results at all energies. The latter two are
nearly indistinguishable, suggesting again that these levels of
disorder are small enough that perturbation theory should be
valid. The disagreement cannot be blamed on MA in this case;
at such strong couplings and correspondingly low energies,
MA is extremely accurate for the entire polaron band.9,13 The
disagreement is, therefore, meaningful.

Its origin can be quite easily traced. If we explicitly separate
the n = m = 0 contribution in the disorder self-energy, Eq. (8)
becomes


dis(ω) = σ 2g0(ω − 
MA(ω))

+ σ 2
∑

n+m>0

	n(ω)Wn,m(ω)	m(ω)

n!m!
.

If the contribution of the terms with n + m > 0 can
be ignored, this result leads to Fermi’s golden rule, since
ρ(ω) = − 1

π
Img0(ω − 
MA(ω)). The disagreement between

MA and FGR, then, comes from the contribution of the terms
with n + m > 0. These terms cannot be ignored at strong
electron-phonon coupling. Consider, for instance, F

(n)
ki (ω) =

〈0|ckĜH(ω)c†i b
†n
i |0〉, which is proportional to 	n(ω) and

therefore is responsible for its appearance in 
dis(ω). If we
Fourier transform to real times, F

(n)
ki (τ ) is proportional to

the amplitude of probability that if an electron is injected
in the system at some moment, at a time τ later we find
the electron in the presence of n bosons, all at the same
site. At strong couplings, the electron dresses itself with a
large phonon cloud to become a polaron, so the probability
of finding it with many phonons in its vicinity should be
considerable, while the probability of finding the electron
without any phonons (n = 0) is exponentially small. In the
large λ limit, the terms which are expected to contribute most
are those with n ≈ g2/�2, i.e., values close to the average
number of phonons in the polaron cloud. In contrast, for small
λ the phonon cloud is very fragile and, in fact, most of the time
the electron is alone (resulting in a large quasiparticle weight).
This is why, for weak coupling, keeping only the n = m = 0
term in the sum provides a good approximation.

These considerations are illustrated diagramatically in
Fig. 5. Panel (i) shows the Born approximation for the
disorder averaged Green’s function of a carrier, which leads
to Fermi golden’s rule expression for the lifetime, as already
discussed. Panel (ii) shows its equivalent for the disorder-
averaged Green’s function of the polaron; as discussed above,
this is equivalent with keeping only the n = m = 0 term in
the disorder self-energy, Eq. (8). Since each clean polaron
propagator starts and ends with a free carrier propagator, this
approximation means that the electron can scatter on disorder
only in the absence of phonons; this is why this approximation
fails at large electron-phonon coupling, where a large phonon
cloud forms. In contrast, the full MA expression includes
diagrams such as shown in panel (iv), where phonon and
disorder lines cross. One can think of these as leading to an
effective renormalization of the disorder strength, especially
since these diagrams are very similar to those which result in
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FIG. 5. (i) FGR approximation for the disorder-averaged Green’s
function of a carrier (double thin line), in terms of that of the
free carrier (thin line) and uncorrelated disorder (dashed line) in
the absence of electron-phonon coupling; (ii) FGR approximation
for the disorder-averaged Green’s function of a polaron (double
thick line), in terms of that of the clean polaron (thick line);
(iii) clean polaron Green’s function in terms of free carrier (thin
lines) and phonon (curly lines) propagators; (iv) the first few terms in
the MA approximation for the disorder averaged Green’s function of
a polaron.

the renormalization of a single impurity potential, discussed
in Refs. 3 and 4.

Our results in Fig. 3 reveal that this renormalization of
the disorder (considerably) lowers the polaron lifetime. Thus,
the strong electron-phonon coupling effectively enhances the
strength of the disorder potential. Why this is so is not
easy to infer from the results for a single impurity potential,
where renormalization can either increase or decrease the bare
potential, and even change its sign, and all these behaviors
are seen at different energies (retardation effects are very
significant). In any event, Fig. 3 shows that this renormalization
is quantitatively significant.

A more detailed picture of the evolution of τk and Ek
with disorder � at strong coupling λ is shown in Fig. 6 for
two momenta k1 = (2π/9,0,0) and k2 = (π/6,0,0), which
have free electron energies εk1 ≈ −5.5t and εk2 ≈ −5.7t ,
respectively. In Fig. 6(a), we trace their inverse lifetimes as
a function of disorder. At small � both these states are well
above EG,PS , and their scattering rates increase monotonically
with �, as one would expect on general grounds. However, the
inverse lifetimes reach a maximum after which they begin to
decrease fast and eventually vanish. The value of � where they
vanish is the disorder at which that eigenstate has Ek = EP,GS .
For larger disorder, this eigenstate moves below the free
polaron bandedge, and its lifetime becomes infinite. This is
more clearly shown by Fig. 6(b), where the inverse lifetimes
are plotted vs the corresponding eigenenergy Ek for these two
momenta, as disorder is increased. This confirms that the scat-
tering rates for both polaron states vanish when their energy

0.00 0.05 0.10 0.15
Δ/t

0

1×10-4

2×10-4

1/tτk

k1
k2

-7.70-7.72
Ek/t

0

1×10-4

2×10-4

1/tτk

k1
k2

)b()a(
increasing
disorder

*

FIG. 6. (Color online) (a) Inverse lifetime vs disorder, and (b)
inverse lifetime vs energy Ek, as disorder is turned on, for two
momenta k1 = (2π/9,0,0) and k2 = (π/6,0,0), for a polaron with
λ = 1.2, � = t , η = 10−3t . The asterisk in panel (b) marks the clean
polaron GS energy in the clean system, EP,GS , for these parameters.
See text for more details.

drops below EP,GS , whose location is marked by the asterisk.
The value of � where this happens depends on how far above
EP,GS was the energy Ek of this polaron, in the limit � → 0.

Figure 3 showed that using the FGR estimate, i.e., τ−1
k =

πσ 2ρ(Ek), is quantitatively wrong. We can also compare the
polaron lifetime, where finite, with that of a free particle of
renormalized mass, similar to the comparison in Fig. 2. This
is shown in Fig. 7, where we compare 1/(t∗τk) vs �/t∗ for
the polaron, with the inverse lifetime of a free electron with
the same momentum. While roughly quadratic dependence
is observed for the polaron at small disorder, the coefficient
is quite different from that for the free electron. At higher
disorder, the disagreement is even worse.

This shows that for intermediate and large electron-phonon
coupling, where a heavy small polaron forms, its lifetime
in the presence of disorder is not described quantitatively

0 0.1 0.2 0.3 0.4 0.5
Δ/t*

0

0.001

0.002

1/t*τκ
polaron, λ=1.2,  t*=0.148t
free electron, λ=0,  t*=t

FIG. 7. (Color online) Same data as shown in Fig. 6(a) but with
rescaled axes; 1/(t∗τk) vs �/t∗ for momentum k2 = (2π/9,0,0)
(empty squares) is compared with the free electron lifetime (triangles)
at the same momentum, for λ = 1.2 where t∗ = 0.148t . Other
parameters are � = t and η/t = 10−3.
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by the predictions corresponding to a simple particle with
renormalized mass. The polaron has an internal structure
which manifests itself in significant corrections to Fermi’s
golden rule even for weak disorder. The scattering of the
electron in the presence of its phonon cloud is quite different
from that of a simple particle of the same effective mass, but
without a cloud.3,4

IV. SUMMARY AND CONCLUSIONS

Using MA to deal with the electron-phonon coupling and
perturbation theory to deal with the weak disorder, we derived
an expression for the disorder-averaged Green’s function of
the Holstein polaron in a simple cubic lattice with random
on-site energies. This allowed us to find an analytic expression
for the lowest-order contribution from disorder to the polaron
self-energy.

The disorder-averaged spectral weight was used to extract
the lifetime and energy shift of various polaron states. For
weak electron-phonon coupling, we found that the MA results
are in reasonable quantitative agreement with those predicted
by Fermi’s golden rule for a free particle with an appropriately
renormalized mass.

At intermediate and larger electron-phonon coupling where
a small polaron forms, however, the MA results quantitatively
disagree with Fermi’s golden rule estimate everywhere the
lifetime is finite and for all levels of disorder. The reason
for this is the fact that the scattering of the electron in the
presence of its (robust) phonon cloud is quite different from
the scattering of a simple particle with renormalized mass. This
is the same physics that leads to a significant renormalization
of the disorder potential seen by a polaron as compared to the
bare disorder.3,4 This demonstrates that, in the small polaron
limit, it is wrong to assume that the only effect of the polaron
cloud is to renormalize the polaron’s mass.

It is important to note that this calculation is only valid
for weak disorder. It is based on perturbation theory, and
in principle it can be improved by going to higher orders
along the same lines we used to calculate the lowest-order
contribution. However, one should remember that, as disorder
becomes stronger, Anderson localization will eventually occur,
and that this cannot be captured within perturbation theory.
Also, once disorder is large enough to lead to localization,
the disorder-averaged Green’s function loses its meaning and
usefulness. Instead, here the signature of localization becomes
manifest in the distribution of various quantities such as the
local density of states, not in their average value.

A surprise, at least at first sight, is the fact that this
calculation predicts an infinite lifetime for a range of energies
at the bottom of the polaron band. This interval can include a
significant fraction of the polaron states, especially at stronger
electron-phonon coupling and larger disorder. As we already
mentioned, this is in fact similar to what happens for a
free particle, which also is predicted, within this level of
perturbation theory, to have an infinite lifetime for all momenta
for which |Ek| > 6t . The difference is only quantitative: the
energy shift for a free particle is tiny compared with its 12t

bandwidth, whereas for a small polaron this shift can be
comparable with its significantly narrower bandwidth even
for rather weak disorder.

A likely reason for this can be inferred from the fact that,
for a free particle, states at the band edge become localized
immediately upon introduction of disorder. In other words, we
already know that there is a finite range of energies (which, for
weak disorder, falls outside the free particle bandwidth) where
treating disorder perturbationally and calculating the disorder-
averaged Green’s function is meaningless. It is then reasonable
to conclude that the states for which this perturbational scheme
predicts infinite lifetimes are, in fact, already localized. If this
is correct and generalizes to the polaron case, it suggests that,
unlike for a free particle, for a polaron localization sets in
differently at the lower vs the upper polaron band edge. We
have already speculated that this difference may be due to the
influence of the higher-energy states that exist in the polaron
spectrum. Confirmation of these conclusions will require a
study going beyond a perturbational treatment of disorder.
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APPENDIX A: MA SOLUTION FOR THE CLEAN SYSTEM

Using the same notation as in the main part, the Holstein
Hamiltonian for a clean system is

HH = H0 + V̂el-ph. (A1)

To calculate GH(k,ω) = 〈0|ckĜH(ω)c†k|0〉, we use
Dyson’s identity ĜH(ω) = Ĝ0(ω) + ĜH(ω)V̂el−phĜ0(ω).
The propagators for H0 are 〈0|ckb

n
i Ĝ0(ω)c†k′b

†m
j |0〉 =

n!δn,mδi,j δk,k′G0(k,ω − n�), where

G0(k,ω) = 1

ω − εk + iη
.

We find

GH(k,ω) = G0(k,ω)

[
1 + g

∑
i

eik·Ri

√
N

F
(1)
k,i (ω)

]
, (A2)

where we introduced the generalized propagators F
(n)
k,i (ω) =

〈0|ckĜH(ω)c†i b
†n
i |0〉. Note that F

(0)
k,i (ω) = GH(k,ω) exp(−ik ·

Ri)/
√

N . Using the Dyson identity again, we find that for
n � 1

F
(n)
k,i (ω) = g

∑
j 
=i

G0(j,i,ω − n�)〈0|ckĜH(ω)c†j b
†
j b

†n
i |0〉

+ gG0(i,i,ω − n�)
[
nF

(n−1)
k,i (ω) + F

(n+1)
k,i (ω)

]
.

Here:

G0(j,i,ω) =
∑

k

eik·(Rj −Ri )

N
G0(k,ω)

is the free propagator in real space (the sum is over the Brillouin
zone). This propagator decays exponentially with the distance
|Rj − Ri | for energies outside the free particle continuum,
|ω| > 6t . Since we are interested in energies ω − n� ∼
EP,GS − n�, where the polaron GS energy EP,GS < −6t ,
all these propagators become exponentially small for j 
= i.
It is therefore a reasonable first approximation to ignore
j 
= i terms in the EOM written above. This is what the MA

205109-7



HADI EBRAHIMNEJAD AND MONA BERCIU PHYSICAL REVIEW B 86, 205109 (2012)

approximation does (higher flavors include j 
= i terms in a
certain progression13).

Within MA, then, we have for any n � 1

F
(n)
k,i (ω) = gg0(ω − n�)

[
nF

(n−1)
k,i (ω) + F

(n+1)
k,i (ω)

]
, (A3)

where g0(ω) = G0(i,i,ω); see Eq. (11). This recurrence rela-
tion is solved in terms of continued fractions:9

F
(n)
k,i (ω) = An(ω)F (n−1)

k,i (ω) (A4)

for any n � 1, where

An(ω) = ngg0(ω − n�)

1 − gg0(ω − n�)An+1(ω)
. (A5)

Finally, using F
(1)
k,i (ω) = A1(ω)F (0)

k,i (ω) in Eq. (A2) leads to the
MA solution:

GH(k,ω) = 1

ω − εk − 
MA(ω) + iη

where


MA(ω) = gA1(ω). (A6)

APPENDIX B: MA SOLUTION FOR F(n)
ki (ω)

As discussed in the text, we need to calculate the propaga-
tors 〈0|ckĜH(ω)c†i b

†n
s |0〉. Within the MA approximation (see

above), this propagator is set to zero for all i 
= s, because
it is proportional to G0(s,i,ω − n�). The only finite value is
for i = s, in which case 〈0|ckĜH(ω)c†i b

†n
i |0〉 = F

(n)
ki (ω). These

propagators have already been calculated above, F
(n)
ki (ω) =

An(ω)F (n−1)
ki (ω) = · · · = 	n(ω)F (0)

ki (ω), where

	n(ω) ≡ An(ω)An−1(ω) · · · A1(ω). (B1)

APPENDIX C: MA EXPRESSION FOR W n,m(ω)

Here we calculate the remaining needed propagators,
Wnm(ω) = 〈0|bn

i ciĜH(ω)c†i b
†m
i |0〉 = Wmn(ω). Because of this

symmetry, we only need to find Wnm(ω) for m � n.
Note that we already know W 00(ω) = 〈0|ciĜH(ω)c†i |0〉 =
1
N

∑
k GH(k,ω) = g0(ω − 
MA(ω)), and also Wn0(ω) =

〈0|bn
i ciĜH(ω)c†i |0〉 = ∑

k
e−ik·Ri√

N
[F (n)

ki (ω)|η→−η]∗ = 	n(ω)g0

(ω − 
MA(ω)).
For any m � 1, writing the EOM for Wnm(ω) within the

MA approximation (i.e., not allowing the electron to change
its site), leads to

Wn,m(ω) = m!g0(ω − m�)δnm + gg0(ω − m�)

×[mWn,m−1(ω) + Wn,m+1(ω)]. (C1)

For m > n, the delta function vanishes and Eq. (C1) is identical
to Eq. (A3), hence

Wn,m(ω) = Am(ω)Wn,m−1(ω). (C2)

In particular, this gives Wn,n+1(ω) = An+1(ω)Wn,n(ω). Using
this in Eq. (C1) with n = m relates Wn,n(ω) to Wn,n−1(ω):

Wn,n(ω) = An(ω)Wn,n−1(ω) + (n − 1)!

g
An(ω). (C3)

This is taken together with the EOM for 1 � m � n − 1,

Wn,m(ω) = gg0(ω − m�) × [mWn,m−1(ω) + Wn,m+1(ω)]

to give a system of n equations with n unknowns Wn,m(ω),
m = 1, . . . ,n [Wn,0(ω) is known; see above]. This can be
solved in many ways, including direct numerical solution.
A nicer approach is to use the linearity of this system of
equations to split it into two different systems, one which has
only (n−1)!

g
An(ω) and one which has only gg0(ω − �)Wn,0(ω)

as inhomogeneous parts. These can be solved analytically, to
give

Wn,m(ω) = 	m(ω)Wn,0(ω) + 	̃m(ω)
(n − 1)!An(ω)

g[1 − An(ω)Bn(ω)]
,

where 	̃m(ω) = Bm+1(ω)Bm+2(ω) · · · Bn(ω) for m < n while
	̃n(ω) = 1, and

Bm+1(ω) = gg0(ω − m�)

1 − (m − 1)gg0(ω − m�)Bm(ω)

are continued fractions ending at B2(ω) = gg0(ω − �).

APPENDIX D: ATA SELF-ENERGY

ATA15,16 relates the disorder part of the self-energy of a
single particle to the disorder average of its transfer matrix
through a single impurity with on-site energy ε:


ATA(ω) = t̄

1 + t̄g0(ω)
, (D1)

where t = ε/[1 − εg0(ω)] is the sum over all single impurity
scattering contributions. g0(ω) is the momentum average of
the free particle propagator; see Eq. (11).

For Anderson-type disorder we find

t̄ = 1

2�

∫ �

−�

εdε

1 − εg0(ω)

= − 1

g0(ω)
+ 1

2�g2
0(ω)

ln
1 + �g0(ω)

1 − �g0(ω)
.

Expanding to lowest order regains the perturbational
result, Eq. (10): 
ATA(ω) ≈ �2

3 g0(ω) = σ 2g0(ω). Differences
between ATA and FGR show that disorder is so large that
multiple scattering processes off the same impurity cannot be
ignored anymore.

To extend ATA to the Holstein model, we note that
difference between the MA clean polaron’s Green’s function
and that of the free electron is the appearance of 
MA(ω). This
simply modifies g0(ω) → g0(ω − 
MA(ω)) in all the above
equations. As discussed above, this approximation implies
that there is no crossing between phonon lines and scattering
lines, in diagramatic terms. Our results show that this is a bad
approximation at larger electron-phonon coupling.
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