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The momentum average approximation is used to derive a new kind of nonperturbational analytical

expression for the optical conductivity (OC) of a Holstein polaron at zero temperature. This provides

insight into the shape of the OC, by linking it to the structure of the polaron’s phonon cloud. Our method

works in any dimension, properly enforces selection rules, can be systematically improved, and also

generalizes to momentum-dependent couplings. Its accuracy is demonstrated by a comparison with the

first detailed set of three-dimensional numerical OC results, obtained using the approximation-free

diagrammatic Monte Carlo method.
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Although the study of polarons is one of the older
problems in solid state physics [1], a full understanding
of their properties is still missing. This is especially true for
the excited states which influence response functions like
the optical conductivity (OC). OC measurements have
revealed the role of the electron-phonon (e-ph) coupling
in many materials, e.g., cuprates [2] and manganites [3]. In
particular, the shape of the OC curve is important, as it
signifies large versus small polaron behavior [4].

The OC of polarons has been studied numerically using
exact diagonalization in 1D [5] and for small clusters in
higher dimensions (here, finite size effects can be an issue)
[6]. There are also some diagrammatic Monte Carlo
(DMC) results for the 3D Fröhlich and 2D Holstein models
[7]. DMC gives approximation-free results in the thermo-
dynamic limit, but it requires significant computational
effort; this is why there are very few DMC OC sets avail-
able in the literature. The conceptual problem associated
with all numerical methods, however, is that they do not
provide much insight for understanding the shape of the
OC and its relation to the properties of the polaron.
Analytical expressions are needed for this, but most prior
work was limited to perturbational regimes [8]. The one
exception is work based on the dynamical mean-field
theory (DMFT) [9], which, however, ignores current vertex
corrections. The consequences are discussed below; here
we state only that a complete understanding of the shape of
the OC is still not achieved using it.

It is, then, hard to overemphasize the need for an accu-
rate analytical expression establishing a nonperturbative
structure of the OC. In this Letter we obtain such an
expression using a generalization of the momentum aver-
age (MA) approximation. MA was developed for the
single-particle Green’s function of the Holstein polaron
[10] and then extended to more complex models [11],
including disorder [12]. It is nonperturbational since it
sums all self-energy diagrams, up to exponentially small

terms which are discarded. MA becomes exact in various
asymptotic limits, satisfies multiple spectral weight sum
rules, is quantitatively accurate in any dimension, at all
energies for all parameters except in the extreme adiabatic
limit, and can be systematically improved [10].
Here we show how to use MA to calculate two-particle

Green’s functions, needed in response functions like the
OC. Besides efficient yet accurate results at any coupling,
this finally provides the explanation for the physical mean-
ing of the shape of the OC. Moreover, this MA-based
approach generalizes to OC calculations for models with
momentum-dependent e-ph coupling [11].
We use the Holstein model [13] as a specific example

since some numerical data are available for comparison:

H ¼ X
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Here, cyk and byk are electron and boson creation operators

for a state of momentum k (the electron’s spin is trivial and
we suppress its index). The free-electron dispersion "k ¼
�2t

Pd
i¼1 cosðkiaÞ is for nearest-neighbor hopping on a

d-dimensional hypercubic lattice of constant a, and the
Einstein optical phonons have energy �. The last term

describes the local e-ph coupling g
P

ic
y
i ciðbyi þ biÞ, writ-

ten in k space. All sums over momenta are over the
Brillouin zone and we take the total number N of sites to
infinity. We set @ ¼ 1 and a ¼ 1 throughout.
For the case we study here, i.e., a single polaron at

T ¼ 0, the optical conductivity is given by the Kubo
formula [14]:
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with V the volume, jc 0i the polaron ground state (GS), and
the charge current operator ĵ ¼ 2et

P
q sinqc

y
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Heisenberg picture. Here, e is the electron charge and q the
component of q parallel to the electric field.

Our main result is that the optical absorption equals

Re ½�MAðiÞ ð!Þ� ¼ 4�e2t2

!

X

n�1

PðiÞ
n fðiÞn ð!Þ: (2)

Here i � 0 is the level of MAðiÞ approximation, denoting
an increasing complexity of the variational description of
the eigenstates [10]. However, the physical meaning is the

same: PðiÞ
n is the GS probability to have n phonons at the

electron site, while fðiÞn ð!Þ are spectral functions describ-
ing the electron’s optical absorption in this n-phonon
environment. Equation (2) shows the direct link between
the OC and the structure of the polaron’s phonon cloud.

Further discussion is provided below. First, we derive
Eq. (2) so that the meaning of various quantities becomes
clear. Expanding the commutator and doing the integral in
Eq. (1), we find �ð!Þ ¼ �þð!Þ þ ð�þð�!ÞÞ�, with

�þð!Þ ¼ i

!V
hc 0jĵ Ĝð!þ E0Þĵjc 0i; (3)

where Ĝð!Þ ¼ ½!þ i��H ��1 with � ! 0þ, and E0 is
the polaron GS energy. The usual route is to use a Lehmann
representation, leading to the well-known formula

�ð!Þ ¼ �

!V

X

n

jhc 0jĵjc nij2�ð!þ E0 � EnÞ (4)

in terms of excited polaron eigenstates jc ni, En. Instead,
we use twice the resolution of identity to rewrite

�þð!Þ ¼ ið2etÞ2
!V

X

q;Q

sinq sinQ
X

�;�

hc 0jcyqj�i

� F��ðq;Q; !þ E0Þh�jcQjc 0i; (5)

where F��ðq;Q; !Þ ¼ h�jcqĜð!ÞcyQj�i. Since jc 0i is the
polaron GS, fj�ig and fj�ig are phonon-only states.
Moreover, because of invariance to translations, their mo-
mentum is �q, respectively �Q. Equation (5) is exact.

Consider now these matrix elements within MAð0Þ,
whose variational meaning is to expand polaron eigenstates

in the basis fcyi ðbyj Þnj0ig, ð8Þi, j, n [10,15]. Then, j�i !
j � q; ni ¼ 1ffiffiffi

N
p P

ie
�iqRiðbyi Þnj0i, since only such states

will have finite overlaps in Eq. (5). The sums over �, �
are now sums over phonons numbers n, m � 1. Note that
n,m ¼ 0 do not contribute to the regular part of�ð!Þ since
j � q; 0i � �q;0j0i, and sinq�q;0 ! 0. They do contribute

to the Drude peak, D�ð!Þ.
The calculation of the single electron Green’s functions

Fnmðq;Q; !Þ ¼ h�q; njcqĜð!ÞcyQj �Q; mi and of the

residues hc 0jcyqj � q; ni is now carried out. Details are
provided in the Supplemental Material [16]. Here, we
note that because of the odd sinq, sinQ terms, only
the part of Fnmðq;Q; !Þ proportional to �q;Q�n;m has

nonvanishing contribution to Eq. (5), explaining the single

sum over n � 1 in Eq. (2). Finally, the overlap jhc 0jcyqj �
q; nij2 is linked to the probability Pn to have n phonons at
the electron site in the polaron GS [17]. The Pn expressions
are listed in the Supplemental Material [16]. Altogether,
we obtain the result of Eq. (2), where

fð0Þn ð!Þ¼ 1

N

X

q

sin2q
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�A0ðq;�!þE0�n�Þ�; (6)

with A0ðq; !Þ ¼ � 1
� ImG0ðq; !Þ being the free-electron

spectral weight, where G0ðq; !Þ ¼ ð!þ i�� "qÞ�1.

Within the n-phonon sector of jc 0i, the electron can carry

any momentum q and fð0Þn ð!Þ basically describes its optical
absorption in the presence of this phonon environment.

At theMAð1Þ level, the variational basis is supplemented

with the states fcyi ðbyj Þnbyl j0ig, ð8Þi, j � l, n, which are

key to describing the polaronþ one-phonon continuum
[10]. This enlarges the fj�ig and fj�ig sets with the states

j � q; n; �i ¼ 1ffiffiffi
N

p P
ie

�iq�Riðbyi Þnbyiþ�j0i for all � � 0. The

new matrix elements are found similarly and give much

lengthier yet more accurate formulas for Pð1Þ
n and fð1Þn ð!Þ

[18], but with the same physical meaning.
We now discuss the key features of the 3D OC results.

This is because (i) no accurate Holstein OC results were
available in 3D, and we provide the first detailed set of
DMC data, and (ii) DMFT is a better approximation for
higher D. For the OC, the key approximation of DMFT is
to ignore current vertex corrections, so we test its validity
in 3D where it should be most accurate.
GS phonon probabilities Pn for a 3D Holstein polaron at

several effective couplings � ¼ g2=ð2dt�Þ are shown in
Fig. 1. 1D results are quite similar [17]. At weak e-ph
couplings, the polaron has few phonons in its cloud
so Pn�1 are small. At the crossover to a small polaron at
�� 1, the distribution changes abruptly and dramatically.

As � ! 1, Pn ! 1
n! ðg�Þ2ne�g2=�2

, the Lang-Firsov (LF)
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FIG. 1 (color online). Phonon statistics for a 3D Holstein
polaron with (a) small to intermediate, and (b) large effective
couplings, and �=t ¼ 0:5. MAð0Þ (dashed lines, open symbols)
and MAð1Þ (solid lines, solid symbols) results are shown. The
Lang-Firsov (LF) asymptotic result is shown for � ¼ 1:25.
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limit, already quite accurate for � ¼ 1:25. The difference

between MAð0Þ and MAð1Þ is small. This is not surprising,
since these probabilities are for the GS, which is already

very accurately described by MAð0Þ [10]. The additional

basis states added at the MAð1Þ level are essential to de-
scribe excited states in the polaronþ one-phonon contin-
uum, starting at � above the GS, and due to a phonon
excited far from the polaron cloud [10]. As we show now,
they do have a significant effect on the fnð!Þ functions and
therefore on the OC onset.

The ! dependence of the OC is dictated by fnð!Þ.
Equation (6) shows that fð0Þn ð!Þ becomes finite at !þ
E0 � n� � �2dt, because the free-electron spectral
weight is finite in [� 2dt, 2dt]. This implies that the onset
of absorption is set by the n ¼ 1 curve to be!th ¼ �2dt�
E0 þ�, and larger n contributions are shifted ðn� 1Þ�
higher. As � increases and E0 falls further below�2dt, this
suggests that !th increases monotonically. This is wrong:
the OC onset is always expected at !th ¼ � [5,7].

The discrepancy is easy to understand. The onset is due
to absorption into the polaronþ one-phonon continuum,

which is not described byMAð0Þ, only byMAð1Þ and higher
levels [10]. Indeed, as shown in Fig. 2, there is a significant
difference between the corresponding n ¼ 1 curves, and

fð1Þn¼1ð!Þ does have an onset at !th ¼ � even though it

becomes hard to see at larger �. The n � 2 curves are
much less affected, in particular, their onset roughly agrees

with that predicted at MAð0Þ level. Similar behavior is
found in 1D, but the peak in each fnð!Þ moves towards
the low-energy threshold [18], as expected since the 1D
free-electron density of states is singular at the band edge.
In Fig. 3, we plot a complete set of OC curves for a 3D

Holstein polaron, using both MA and DMC methods. On
the whole, the agreement is excellent, especially between

MAð1Þ and DMC. We find that MAð1Þ captures all the
qualitative features of the full OC, as well as being able
to resolve finer structure near the absorption onset. In
particular, the ‘‘shoulder’’ that develops on the low-energy
end of the OC spectrum could never be captured with
perturbational methods. In the asymptotic � ! 0, 1
limits the curves are nearly indistinguishable, as expected
since MA becomes exact in these limits. In the crossover

regime �� 1, the differences between MAð0Þ and

MAð1Þ are largest, as are those between MA and DMC
results. Nevertheless, MA does a good job overall, espe-
cially considering that it is an efficient analytical
approximation.
The shapes of the OC curves can now be understood

using Eq. (2) and the data shown in Figs. 1 and 2. For small
�, Pn¼1 is dominant and the OC is basically proportional to
fn¼1ð!Þ. Indeed, its rich structure is clearly visible in the
OC, as is its threshold !th ¼ �. The n � 2 terms serve
only to alter the high-energy tail. In the small polaron limit,
however, Pn¼1 ! 0 and the OC is dominated by large n
contributions. Since these fnð!Þ curves have similar
shapes and are shifted by � with respect to one other,
the OC mirrors the LF Poissonian distribution of Pn.
The peak location is also in good agreement with
2jE0j ¼ 12�t, expected as � ! 1 [8]. This is because
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FIG. 2 (color online). MAð1Þ functions fð1Þn ð!Þ, for (a) small,
(b) medium, and (c) large e-ph coupling, at �=t ¼ 0:5,

� ¼ 0:005 in 3D. Also shown is fð0Þn¼1ð!Þ (dashed line).
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FIG. 3 (color online). OC in units of �0 ¼ �e2t2 for a 3D Holstein polaron, calculated using MAð0Þ, MAð1Þ, and DMC. The inset in
panel (c) shows the absorption onset, and the no-vertex correction OC at kBT ¼ 0:01�, scaled by 103 (thin line marked by arrow).
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when the electron is moved to a neighboring site by optical
absorption, it loses the polaronic binding energy E0 and it
also leaves behind excited phonons with the same energy.
The structure of our expression (2) proves that not only the
peak energy, but also the very shape of the OC curve is

determined by the probabilities PðiÞ
n . In 1D (not shown), the

fnð!Þ functions are more peaked and individual contribu-
tions can be seen in the OC, as �-spaced kinks. The
agreement with available 1D numerical data is of similar
a quality with that of Fig. 3 [18].

Consider now the DMFT-like no-vertex correction ap-
proximation, in which the two-particle Green’s function in
Eq. (3) is replaced by a convolution of polaron spectral
weights (for details, see [16]). The scaled result for � ¼ 1,
kBT ¼ 0:01�, is shown in Fig. 3(c). A prominent feature is
the peak (marked by an arrow) below !th, in agreement
with low-T data in Ref. [9], where it was identified as an
excitation from the GS into the first bound state. Indeed,
the peak is at �0:12t, their energy difference. The peak
likely vanishes at T ¼ 0, � ¼ 0, [16]; however, this shows
that a naive consideration of the convolution may lead to a
qualitatively wrong idea of the OC structure. DMC and
MA results do not show this peak, although the second
bound state is visible in their spectral weight [16]. Its
absence implies a vanishing matrix element in Eq. (4),
likely due to the different symmetry of the polaron wave
function in the two states [19]. Clearly, Eq. (2) properly
accounts for such selection rules. More analysis is pro-
vided in the Supplemental Material [16].

To further prove the accuracy of MA, we compare in
Table I the total integrated OC, Sð1Þ ¼ R1

0 d!�ð!Þ, for
MA and DMC. The agreement is again very good, particu-
larly at small and large �, where we typically find less than
a 5% difference. At intermediate couplings MA accounts
for over 85% of the total integrated OC, which is quite
remarkable for an analytical approximation.

Knowledge of the total integrated OC can also be used to
verify that MA satisfies the f-sum rule, given by [20]:

� e2aEkin ¼ 1

�
Dþ 2

�
Sð1Þ; (7)

where Ekin is the GS polaron kinetic energy and D ¼
�e2a=m� is the Drude weight [21], m� being the polaron
effective mass. Both these quantities can be calculated
from the GS properties of the polaron, using known MA
methods [10]. In all cases reported here, we have verified
that the total integrated OC matches the expected value
from the f-sum rule to at least three decimal places.

In conclusion, we have obtained the first accurate ana-
lytical nonperturbational expression for the T ¼ 0 optical
conductivity of a Holstein polaron. It explains the shape of
the OC curve by explicitly relating it to the statistics of the
polaron cloud. We find no absorption below the threshold
at � even if a second bound state exists, proving that
Eq. (2) accounts for selection rules. Moreover, this work
can be generalized for OC studies of polaronic systems
with momentum-dependent e-ph coupling, and also disor-
der, in any dimension.
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