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Abstract

The magnetic behavior of semiconductors doped with randomly distributed magnetic elements (such as iron or manganese)
and/or bound carriers (such as phosphorus or boron in silicon) are described by many-body Hamiltonians with a broad
distribution of coupling constants and energy scales. These wide distributions (covering several orders of magnitude in some
cases) lead to unusual properties, such as strong suppression of magnetic phase transitions due to quantum fluctuations, unusual
thermodynamic behavior in the magnetically ordered phase, etc. The wide distributions also pose several challenges to both
analytical and computational approaches used to calculate the physical properties of such systems. We describe some of the
techniques that have been applied successfully to such systems, including numerical renormalization group as well as Monte
Carlo methods. Examples are drawn from lightly doped conventional semiconductors [Si, Ge] as well as diluted magnetic
semiconductors [such as (Cd,Mn)Te and (Ga,Mn)As]. Extension of these methods to diluted magnetic semiconductors in the
metallic regime with itinerant carriers (fermionic degrees of freedom) is also discussed. 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Semiconductors containing a small amount of im-
purities offer a unique system in which several phe-
nomena of interest to many-body physics can be ob-
served in a rather clean way. Because the Bohr ra-
dius describing the (hydrogenic) wavefunction of the
carrier provided by the dopant can vary from atomic
scale to several hundred Å, a wide range of behav-
ior, not possible in other materials, is actually observed
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in such systems. (The extra length scale, distinct from
the lattice scale, allows the greater degree of flexibil-
ity.) Thus, doped semiconductors form ideal materials
to study the phase transition [1] from an insulator (at
low doping densities) to a metal (at high doping densi-
ties). Concomitantly, there are large changes in trans-
port, optical as well as magnetic behavior. We concen-
trate on this last aspect in this paper. It is extremely
important to recognize that the system of impurities
is randomly (Poisson) distributed; consequently, many
of the ideas coming out of periodic lattice systems do
not apply here.

In Section 2, we discuss doped nonmagnetic semi-
conductors, and show how the magnetic properties at
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Fig. 1. Left: Low-temperature magnetic susceptibility of Si:P in the insulating phase. Points correspond to data [3] and solid lines are calculations
from Ref. [2]; Right: Probability distribution of the initial (bare) nearest-neighbor exchange coupling at the density indicated.

low doping densities, in particular, led to an under-
standing of the significant effect of large-scale dis-
order (broad distribution of coupling constants) in
quantum mechanical systems. The next two sections
pertain to diluted magnetic semiconductors (DMS),
where the host semiconductor is an alloy with a small
percentage of the sites replaced by a magnetic ion
(e.g., Mn) with a magnetic moment in the ground state
arising from an unfilledd-shell. The presence of the
magnetic ion leads to a reversal of the magnetic na-
ture of the doped semiconductor from antiferromag-
netic (AFM) to ferromagnetic (FM); however, the two
families share the aspect of a broad spectrum of energy
scales over which magnetic and thermodynamic de-
grees of freedom remain active. We discuss the conse-
quences of the broad distributions in each of these sys-
tems (compared to typical condensed matter systems
with zero or weak disorder), as well as the challenges
faced by different computational methods to address
the problem.

2. Antiferromagnetic systems

For nonmagnetic semiconductors (e.g., Si, Ge) con-
taining either n-type (P or As) or p-type (B or Ga) im-
purities, the magnetic properties at low temperatures
(T ) are determined mostly by the carriers bound to
the impurities. At very low concentrations(n) these
bound carriers act as free spins, giving rise to a Curie
(χc = C/T ) susceptibility. However, as n is raised or
T lowered sufficiently, interactions between the bound
carriers come into play. Interactions between electrons

bound in hydrogenic states are described by a Heisen-
berg exchange Hamiltonian [2]:

H =
∑

i,j

J (Rij )si · sj , (1)

where i and j are the random dopant positions
and J (R) ∼ exp(−2R/aB) is the AFM exchange
interaction. The resultantχ is lower [3] than the Curie
value (see Fig. 1, left panel). However, one major
surprise is that unlike other known materials with
(random) magnetic interactions, this system shows
no sign of a phase transition to a globally ordered
state where the spins are aligned in even a random
configuration that is fixed in time, down toT well
below typicalJ .

The understanding of why that happens was pro-
vided by Bhatt and Lee [2], who showed, using a
numerical position space perturbative renormalization
group (RG) scheme, that for a system where the inter-
actions are distributed very broadly (over several or-
ders of magnitude, see Fig. 1, right panel), quantum
fluctuations prevent ordering down toT several orders
of magnitude below that of a classical Ising system
with the same distribution of coupling constants [4].
The broad distribution turns out to be crucial for the
scheme to work—the perturbative parameter is the ra-
tio between the typical and maximum interactions at
every stage of the RG procedure. As long as the dis-
tribution remains broad, the perturbative approach is
extremely good quantitatively [2]. The dominance of
antiferromagnetic interactions, which lead to magnet-
ically inert singlet (non-degenerate) ground states for
strongly coupled spins, is also a prerequisite for this
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approach to work. Monte Carlo methods have been ap-
plied to similar problems in one-dimension [5], but do
not appear to be competitive with the numerical RG
approach. The main unexpected result is that the mag-
netic response at low temperature is dominated not
by long wavelength spin excitations, as in a homoge-
neous system, but instead by dopant spins in unlikely
spatial configurations, such that their effective interac-
tions with the surroundings are strongly weakened as
a result of the renormalization scheme. Interestingly,
these effects persist into the metallic phase at higher
doping densities, where instead of aT -independent
Pauli susceptibility, a stronglyT -dependentχ(T ), po-
tentially diverging asT → 0 is seen [6,7], apparently
due to similar phenomena.

3. Ferromagnetic systems: II–VI DMS

In diluted magnetic semiconductors, the interac-
tions between the carrier spins and the magnetic ions
overwhelm the antiferromagnetic interactions among
the carriers in the regime of interest, leading to an
(essentially) ferromagnetic phase at lowT . Conven-
tional ferromagnets are qualitatively well described
by a Weiss (mean-field) treatment of the Heisen-
berg HamiltonianH = ∑

i �=j Jij Si · Sj . For spinsSi

arranged on a lattice, the mean-field critical tempera-
ture is TC = |J |S(S + 1)/3kB, whereJ = ∑

j �=i Jij

and S is the magnitude of the spin. BelowTC, the
spontaneous magnetization〈M〉 = gµB〈Sz

i 〉 increases
rapidly (Fig. 2), and it is close to the saturation value
M0 = gµBS below T < 0.5TC. While fluctuation ef-
fects make quantitative changes,M(T ) retains most
of its variation nearTc, and the qualitative shape of
the curve remains as in the Weiss treatment. Concur-
rently, the specific heat has a peaked structure around
Tc , and drops rapidly to zero forT < 0.5TC reflecting
the fact that the only accessible degrees of freedom for
low T are the long-wavelength (collective) spin-wave
excitations with low phase space.

A typical II–VI DMS system is a semiconductor
such as CdTe or ZnSe, with some of the divalent sites
(Cd/Zn) substituted by the magnetic ion Mn, which is
isovalent with Cd/Zn, but also has a half-filled 3d shell,
with an S = 5/2 spin (Hund’s rule). For small con-
centrationsx of Mn, direct interactions between the
Mn spins can be neglected. When shallow (charged)

Fig. 2. Magnetization of a Weiss ferromagnet as a function of
temperature (solid line). The experimental points are for iron (×),
nickel (o), cobalt (�) and magnetite (+) [8] .

dopants are introduced in the system, the bound elec-
tron (or hole) in a hydrogenic 1s state interacts with
the S = 5/2 Mn spins via an exchange interaction of
the Heisenberg type, leading to a Hamiltonian [9]:

H =
∑

i,j

J (ri, Rj )si · Sj . (2)

The exchange interactionJ (ri , Rj ) between the elec-
tron/hole centered atri and the Mn spin atRj is pro-
portional to the electronic charge density at the Mn
site, which, for hydrogenic 1s wavefunctions leads to

J (ri , Rj ) = J0e−2|ri−Rj |/aB, (3)

where J0 is the exchange constant andaB is the
Bohr radius (∼10–20 Å). Typically, for electronsJ0 <

0, while for holesJ0 > 0. However, since in the
following we treat the spins as classical variables, the
sign is irrelevant. For specificity, in the rest of the
paper we assumeJ0 > 0.

Qualitatively, at a temperaturekBT < J (r) [see
Eq. (3)], all Mn spins within distancer of a dopant will
order their spins antiferromagnetically with respect
to the dopant hole spin, creating a region with a
large moment (from all the parallel polarized Mn
spins) near the dopant, known as a bound magnetic
polaron (BMP). The radius of the BMP increases with
decreasingT , leading to true long-range FM order
whenT is low enough that a continuous percolating
network of BMPs is formed. However, since the
corresponding percolation fraction is∼20%, even
below the transition many Mn spins remain unattached
to the percolated cluster till much lowerT . This results
in a very unusual FM phase, in which a substantial part
of the spin entropy survives down to very lowT .

We performed Monte Carlo simulations on the
Hamiltonian (2) to study this unusual FM phase, treat-
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Fig. 3. Magnetization per Mn spin as a function of temperature, in
a II–VI DMS, for classical/discrete spin models (left/right panel).
The magnetization curves are very unlike the typical magnetization
curve shown in Fig. 2.

ing both Mn and carrier spins as classical variables.
This appears to be a reasonable approximation since
S = 5/2 is a large spin and the Mn spins dominate the
magnetic response. We used the standard single-spin-
flip Metropolis algorithm satisfying detailed balance at
each step. Equilibration was achieved [10] by running
two copies with identical locations for dopants and
Mn spins. One copy was initialized with a totally ran-
dom configuration of spins, and the other one with the
expectedT = 0 FM ground state configuration. Mea-
surements were made after the magnetization〈|M|〉 of
the two replicas agreed within error bars.

Simulations were carried out for zinc-blende lat-
tices with lattice constanta = 5 Å, for Mn concentra-
tion x = 0.001, dopant densitynd = 1018 cm−3 and
aB = 20 Å. The exchangeJ0 defines the unit of en-
ergy. Lattices with linear sizes 20–40 were considered,
with 256–2048 Mn spins and 8–64 carrier spins, re-
spectively, averaging up to 3000 samples [11]. The
magnetization curves obtained have unusual, concave
shapes (see Fig. 3, left panel), very unlike the typi-
cal magnetization curve of Fig. 2. For these parame-
ters, the critical temperatureTC = 0.014J0 is found
using finite size scaling [11]. We find that the magne-
tization reaches its saturation value only at exponen-
tially small temperatures, reflecting the existence of
the quasi-free Mn spins outside the percolated (mag-
netically ordered) region.

Specific heat of the classical Heisenberg model has
the unphysical limitCV → NkB asT → 0 (see Fig. 4).
While this agrees with the equipartition theorem,
it implies that quantum mechanics (discrete energy
levels) is needed to capture the correct limitCV → 0

Fig. 4. Specific heat per Mn spin as a function of temperature, for
continuous (empty squares) and discrete (full squares) spin models.
N = 2048 Mn spins in both cases.

Fig. 5. Equilibration times for two replicas with 256 spins, starting
with random spin configuration (squares), and with FM spin
configuration (circles), forkBT /J0 = 10−5. Empty (full) symbols
correspond to the single-spin-flip (cluster) algorithm.

as T → 0. One way to mimic the discretization, but
avoid the complexities of the quantum Monte Carlo
treatment, is to use a discrete (classical) vector model,
in which each Mn spin can only be oriented along
one of the six [100] directions. In this case the single-
spin-flip approach cannot be used, especially atT

small compared to the (finite) energy needed for a
spin-update. At suchT , samples freeze in metastable
states, with BMPs polarized in different directions,
and equilibration times become extremely long. An
efficient cluster algorithm allowing the flipping of
entire domains of polarized spins at once has been
implemented in this case (for details, see Ref. [11]),
leading to much faster equilibration times (see Fig. 5).

While the magnetization curves are very similar to
the ones obtained in the continuous spin Heisenberg
model (see Fig. 3), the specific heat results are very
different (see Fig. 4). As expected, for the discrete
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model CV → 0 as T → 0. However, unlike for a
typical FM, the peak inCV is not nearTC, but at
temperatures well belowTC. This is a reflection of
the residual entropy of the free Mn spins outside the
percolated region.

4. Ferromagnetic systems coupled to fermions:
III–V DMS

When Mn is doped in a III–V semiconductor, such
as GaAs, the major difference with respect to the II–VI
DMS is that the Mn atom provides both theS = 5/2
spin and the dopant charge carrier (a hole, since Mn,
of valence II, substitutes for Ga, of valence III). While
this implies equal numbers of holes and Mn spins, it is
experimentally found that the holes to Mn spins ratio
is p = 10–30%.

For low Mn concentrationsx, it is again useful to
start from the single-dopant limit, and assume that
holes are trapped in hydrogen-like impurity states
about Mn atoms. However, since the number of holes
is smaller than the number of Mn, there must be a
mechanism to allow the holes to “choose” the Mn
dopants near which to stay. Such a mechanism is
naturally provided by hopping processes facilitated by
the overlap between impurity wave functions centered
at different Mn sites. Thus, the simplest Hamiltonian
describing this system is

H =
∑

i �=j

tij c
†
iσ cjσ +

∑

i,j

Jij si · Sj . (4)

Here, i indexes different Mn positionsRi , and c
†
iσ

is the creation operator for a hole of spinσ in the
impurity level centered atRi . The first term describes
hopping of holes between impurity levels. If (for
simplicity) we again assume 1s impurity states,tij =
2(1 + r/aB) exp(−r/aB) Ry, wherer = |Ri − Rj |
[12]. The Bohr radiusaB = 7.8 Å and the binding
energy 1Ry= 110 meV for Mn in GaAs [13]. The
second term describes the AFM coupling between the
Mn spin Sj and the hole spinsi = 1

2c
†
iασαβciβ (σ

are the Pauli spin matrices). As in II–VI DMS, the
AFM exchange is proportional to the probability of
finding the hole trapped atRi near the Mn spin atRj ,
Jij = J exp(−2|Ri − Rj |/aB) [see Eq. (3)]. For Mn
in GaAs,J = 15 meV [13].

Fig. 6. Magnetization per Mn spin as a function of temperature, in
a III–V DMS. Curves correspond tox = 0.01, and relative holes to
Mn concentrationsp = 10 and 30%.

We have investigated the Hamiltonian (4) using
Monte Carlo methods. The Mn spinsSj are again
treated as classical variables. Since the Hamiltonian is
quadratic in hole operators, it can be diagonalized for
any configuration of Mn spinsSj and the free energy
of the holes can be computed. This allows us to decide
whether individual Mn spin flips are accepted, using
the Metropolis algorithm. In each Monte Carlo step
we reupdate each Mn spin once, and we average the
final results over many realizations of Mn disorder.
Again, comparisons between initially fully polarized
and initially completely random samples are used
to determine the equilibration times. However, there
are some complications due to the fact that the Mn
spins do not interact directly (as in traditional spin
Hamiltonians), but through the fermionic degrees of
freedom. One complication is related to finding a
proper value for the chemical potentialµ for a desired
hole density. A second complication is due to the
fact that numerical diagonalization of the Hamiltonian
after each individual spin flip is too time-consuming.
We have implemented a perturbational scheme to
compute the change in the hole-free energy due to a
spin flip, and we use full diagonalization after each
Monte Carlo step to re-update the hole eigenfunctions
and eigenenergies. This algorithm is described in
Ref. [14].

The magnetization curves (see Fig. 6) have unusual
concave shapes, similar to the ones obtained for
the II–VI DMS (see Fig. 3). However, the critical
temperatures (found from finite size scaling [14]) are
comparatively much larger than in II–VI DMS. The
increasedTC is due to the fact that hole wavefunctions
in the III–V DMS are peaked at the Mn sites, and
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Fig. 7. Histogram of probabilitypi to find a hole at Mn siteRi , at
kBT /J = 0.01, for x = 0.01 and relative hole to Mn concentration
p = 10%.

furthermore, holes are free to move through the
system from one Mn impurity to another. As a result,
they tend towards regions with larger than average
local Mn concentration, where they can lower both
their kinetic and magnetic energy. Since the AFM
coupling to Mn spins is proportional to the probability
of finding the hole at the Mn site, the effective
coupling for Mn spins in these regions is substantially
increased, leading to higher polarization temperatures
for the spins in these regions. (In contrast, in a II–
VI DMS, the holes are localized near their dopants,
and can only interact with the Mn spins that happen
to be near their orbits). Holes traveling between
various high-density polarized regions in a III–V DMS
force the alignment of Mn spins in all regions to be
the same, in order to minimize their kinetic energy.
This mechanism for the alignment of high-density
polarized regions is also more effective than the one
in II–VI DMS, where correlations between different
BMPs are established through the weakly interacting
spins in between the BMPs. Taken together, these
effects explain the higherTC of III–V DMS, in
qualitative agreement with experimental observations,
which have foundTC < 4 K in II–VI DMS, while
TC = 110 K for Ga0.95Mn0.05As.

The highly inhomogeneous distribution of holes
among the Mn spins can be seen from a histogram of
probabilities to find holes at various Mn sites. If the
holes were equally distributed among the Mn sites, the
probability to find a hole at any Mn site would be the
same,p = 0.10 (for 90% compensation). From Fig. 7
we see that there is a very wide distribution of proba-
bilities, from p ∼ 0.8 for Mn in high-density regions,
to p ∼ 10−2 or less in low-density regions. This is

simply a reflection of this highly inhomogeneous sys-
tem, in which long-range magnetic order coexists with
a large fraction of almost free (non-interacting) spins,
leading to very unusual magnetic properties.

5. Conclusions

We have briefly discussed three families of semi-
conductor-based magnetic Hamiltonians. Because of
the existence of multiple length scales—an effective
Bohr radius of a shallow impurity state, which can be
very different from atomic scales and lattice constants,
all these systems are described by a wide distribution
of coupling constants, which poses special challenges
for numerical methods. Depending on whether the
system is AFM or FM at low temperatures, numerical
renormalization group or Monte Carlo methods appear
to be more appropriate, and with proper care, appear
to yield reliable results for the rather unconventional
magnetic (and ensuing thermodynamic) properties.
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